Spaces:
Running
Running
File size: 8,302 Bytes
4706b6d 6480688 16cff0c 2767f53 cbf9ac1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
from research_tools.base_tool import BaseTool
from openfloor.manifest import *
from openfloor.envelope import *
class OpenFloorResearchAgent:
"""Wrap research tools as independent OpenFloor agents"""
def __init__(self, tool: BaseTool, port: int = None):
self.tool = tool
self.port = port
self.manifest = self._create_manifest()
self.active_conversations = {}
def _create_manifest(self) -> Manifest:
"""Create OpenFloor manifest for this research agent"""
speaker_uri = f"tag:research.consilium,2025:{self.tool.name.lower().replace(' ', '-')}-agent"
# Tool-specific keyphrases and capabilities
tool_configs = {
'Web Search': {
'keyphrases': ['web', 'search', 'current', 'news', 'latest', 'recent'],
'synopsis': 'Real-time web search for current information and trends'
},
'Wikipedia': {
'keyphrases': ['facts', 'encyclopedia', 'history', 'knowledge', 'definition'],
'synopsis': 'Authoritative encyclopedia research and factual verification'
},
'arXiv': {
'keyphrases': ['academic', 'research', 'papers', 'science', 'study'],
'synopsis': 'Academic research papers and scientific literature analysis'
},
'GitHub': {
'keyphrases': ['technology', 'code', 'development', 'programming', 'trends'],
'synopsis': 'Technology adoption trends and software development analysis'
},
'SEC EDGAR': {
'keyphrases': ['financial', 'company', 'earnings', 'sec', 'filings'],
'synopsis': 'Corporate financial data and SEC regulatory filings research'
}
}
config = tool_configs.get(self.tool.name, {
'keyphrases': ['research', 'data'],
'synopsis': self.tool.description
})
return Manifest(
identification=Identification(
speakerUri=speaker_uri,
serviceUrl=f"http://localhost:{self.port}/openfloor" if self.port else None,
conversationalName=f"{self.tool.name} Research Agent",
organization="Consilium Research Division",
role="Research Specialist",
synopsis=config['synopsis']
),
capabilities=[
Capability(
keyphrases=config['keyphrases'],
descriptions=[self.tool.description],
languages=["en-us"]
)
]
)
def handle_utterance_event(self, envelope: Envelope) -> Envelope:
"""Handle research requests from AI experts"""
print(f"π DEBUG: {self.tool.name} - Starting handle_utterance_event")
# Extract the query from the utterance
for event in envelope.events:
if hasattr(event, 'eventType') and event.eventType == 'utterance':
dialog_event = event.parameters.get('dialogEvent')
if dialog_event and isinstance(dialog_event, dict):
# dialog_event is a dict, not an object - use dict access
features = dialog_event.get('features')
print(f"π DEBUG: features: {features}")
if features and 'text' in features:
text_feature = features['text']
print(f"π DEBUG: text_feature: {text_feature}")
if 'tokens' in text_feature:
tokens = text_feature['tokens']
query_text = ' '.join([token.get('value', '') for token in tokens])
print(f"π DEBUG: {self.tool.name} received query: '{query_text}'")
# Perform the research
import time
start_time = time.time()
research_result = self.tool.search(query_text)
end_time = time.time()
print(f"π DEBUG: {self.tool.name} completed in {end_time - start_time:.2f}s")
print(f"π DEBUG: Result length: {len(research_result)} chars")
print(f"π DEBUG: Result preview: {research_result[:200]}...")
# Create response envelope
return self._create_response_envelope(envelope, research_result, query_text)
return self._create_error_response(envelope, "Could not extract query from request")
def _create_response_envelope(self, original_envelope: Envelope, research_result: str, query: str) -> Envelope:
"""Create OpenFloor response envelope with research results"""
# Create response dialog event
response_dialog = DialogEvent(
speakerUri=self.manifest.identification.speakerUri,
features={
"text": TextFeature(values=[research_result])
}
)
# Create context with research metadata
research_context = ContextEvent(
parameters={
"research_tool": self.tool.name,
"query": query,
"source": self.tool.name.lower().replace(' ', '_'),
"confidence": self._assess_result_confidence(research_result),
"timestamp": datetime.now().isoformat()
}
)
# Create response envelope
response_envelope = Envelope(
conversation=original_envelope.conversation,
sender=Sender(speakerUri=self.manifest.identification.speakerUri),
events=[
UtteranceEvent(dialogEvent=response_dialog),
research_context
]
)
return response_envelope
def _assess_result_confidence(self, result: str) -> float:
"""Assess confidence in research result quality"""
if not result or len(result) < 50:
return 0.3
quality_indicators = [
(len(result) > 500, 0.2), # Substantial content
(any(year in result for year in ['2024', '2025']), 0.2), # Recent data
(result.count('\n') > 5, 0.1), # Well-structured
('error' not in result.lower(), 0.3), # No errors
(any(indicator in result.lower() for indicator in ['data', 'study', 'research']), 0.2) # Authoritative
]
confidence = 0.5 # Base confidence
for condition, boost in quality_indicators:
if condition:
confidence += boost
return min(1.0, confidence)
def _create_error_response(self, original_envelope: Envelope, error_msg: str) -> Envelope:
"""Create error response envelope"""
error_dialog = DialogEvent(
speakerUri=self.manifest.identification.speakerUri,
features={
"text": TextFeature(values=[f"Research error: {error_msg}"])
}
)
return Envelope(
conversation=original_envelope.conversation,
sender=Sender(speakerUri=self.manifest.identification.speakerUri),
events=[UtteranceEvent(dialogEvent=error_dialog)]
)
def join_conversation(self, conversation_id: str) -> bool:
"""Join a conversation as an active research agent"""
self.active_conversations[conversation_id] = {
'joined_at': datetime.now(),
'status': 'active'
}
return True
def leave_conversation(self, conversation_id: str) -> bool:
"""Leave a conversation"""
if conversation_id in self.active_conversations:
del self.active_conversations[conversation_id]
return True
def get_manifest(self) -> Manifest:
"""Return the OpenFloor manifest for this research agent"""
return self.manifest |