File size: 13,787 Bytes
c329d21
 
 
 
 
 
 
 
 
 
2e4a786
c329d21
 
 
 
 
 
 
 
f9bdea7
 
c329d21
 
 
 
 
 
 
4e933a0
34765d1
2af5ea1
 
 
 
 
 
 
 
 
 
 
 
34765d1
 
4e933a0
 
 
c329d21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
589504e
 
 
 
 
 
 
 
 
 
 
f9bdea7
 
c329d21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e4a786
c329d21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f9bdea7
c329d21
 
 
 
 
f9bdea7
 
 
c329d21
f9bdea7
c329d21
ac5d2c9
 
 
 
5755686
ac5d2c9
f9bdea7
 
c329d21
 
f9bdea7
 
ac5d2c9
c329d21
f9bdea7
 
 
c329d21
f9bdea7
c329d21
f9bdea7
 
 
c329d21
 
4e933a0
c329d21
 
 
 
 
4e933a0
 
 
 
c329d21
4e933a0
c329d21
 
 
 
 
4e933a0
c329d21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
import gradio as gr
import os
import re
import time
import torch
import torch.nn as nn
from PIL import Image
import pytesseract
from playwright.sync_api import sync_playwright
import asyncio
from transformers import AutoTokenizer, BertTokenizerFast
from torchvision import transforms
from torchvision import models
from torchvision.transforms import functional as F
import pandas as pd
from huggingface_hub import hf_hub_download
import warnings
warnings.filterwarnings("ignore")
from pathlib import Path
import subprocess
import traceback

# --- Setup ---

# Device setup
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")

# Load tokenizer with proper error handling
try:
    # # Try to load from local tokenizer directory
    # tokenizer_path = '/app/tokenizers/indobert-base-p1'
    # if os.path.exists(tokenizer_path):
    #     print(f"Loading tokenizer from local path: {tokenizer_path}")
    #     tokenizer = AutoTokenizer.from_pretrained(tokenizer_path)
    # else:
    #     # If local not available, try direct download with cache
    #     print("Local tokenizer not found, downloading from Hugging Face...")
    #     # tokenizer = AutoTokenizer.from_pretrained('indobenchmark/indobert-base-p1', 
    #     #                                          use_fast=True,
    #     #                                          cache_dir='/app/tokenizers')
    tokenizer = BertTokenizerFast.from_pretrained("indobenchmark/indobert-base-p1")
except Exception as e:
    print(f"Error loading tokenizer: {e}")
    # Fallback to default BERT tokenizer if needed
    print("Falling back to default BERT tokenizer")
    tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')

# Image transformation
class ResizePadToSquare:
    def __init__(self, target_size=300):
        self.target_size = target_size

    def __call__(self, img):
        img = img.convert("RGB")
        img.thumbnail((self.target_size, self.target_size), Image.BILINEAR)
        delta_w = self.target_size - img.size[0]
        delta_h = self.target_size - img.size[1]
        padding = (delta_w // 2, delta_h // 2, delta_w - delta_w // 2, delta_h - delta_h // 2)
        img = F.pad(img, padding, fill=0, padding_mode='constant')
        return img

transform = transforms.Compose([
    ResizePadToSquare(300),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], 
                         std=[0.229, 0.224, 0.225]),
])

# Jalankan ini sekali di awal startup aplikasi (misalnya di main file / sebelum model load)
def ensure_playwright_chromium():
    try:
        print("Checking and installing Playwright Chromium if not present...")
        subprocess.run(["playwright", "install", "chromium"], check=True)
        print("Playwright Chromium installation completed.")
    except Exception as e:
        print("Error during Playwright Chromium installation:", e)
        traceback.print_exc()

# Pastikan dipanggil saat startup (di luar fungsi screenshot)
ensure_playwright_chromium()

# Screenshot folder
SCREENSHOT_DIR = "screenshots"
os.makedirs(SCREENSHOT_DIR, exist_ok=True)

# Set Tesseract language
pytesseract.pytesseract.tesseract_cmd = '/usr/bin/tesseract'  # Path to tesseract in Docker
print("Tesseract OCR initialized.")

# --- Model ---
class LateFusionModel(nn.Module):
    def __init__(self, image_model, text_model):
        super(LateFusionModel, self).__init__()
        self.image_model = image_model
        self.text_model = text_model
        self.image_weight = nn.Parameter(torch.tensor(0.5))
        self.text_weight = nn.Parameter(torch.tensor(0.5))

    def forward(self, images, input_ids, attention_mask):
        with torch.no_grad():
            image_logits = self.image_model(images).squeeze(1)
            text_logits = self.text_model(input_ids=input_ids, attention_mask=attention_mask).logits.squeeze(1)

        weights = torch.softmax(torch.stack([self.image_weight, self.text_weight]), dim=0)
        fused_logits = weights[0] * image_logits + weights[1] * text_logits

        return fused_logits, image_logits, text_logits, weights

# Load model
model_path = "models/best_fusion_model.pt"
if os.path.exists(model_path):
    fusion_model = torch.load(model_path, map_location=device, weights_only=False)
else:
    model_path = hf_hub_download(repo_id="azzandr/gambling-fusion-model", filename="best_fusion_model.pt")
    fusion_model = torch.load(model_path, map_location=device, weights_only=False)

fusion_model.to(device)
fusion_model.eval()
print("Fusion model loaded successfully!")

# Load Image-Only Model
# Load image model from state_dict
image_model_path = "models/best_image_model_Adam_lr0.0001_bs32_state_dict.pt"
if os.path.exists(image_model_path):
    image_only_model = models.efficientnet_b3(weights=models.EfficientNet_B3_Weights.DEFAULT)
    num_features = image_only_model.classifier[1].in_features
    image_only_model.classifier = nn.Linear(num_features, 1)
    image_only_model.load_state_dict(torch.load(image_model_path, map_location=device))
    image_only_model.to(device)
    image_only_model.eval()
    print("Image-only model loaded from state_dict successfully!")
else:
    # Download from HuggingFace if local file doesn't exist
    image_model_path = hf_hub_download(repo_id="azzandr/gambling-image-model", 
                                      filename="best_image_model_Adam_lr0.0001_bs32_state_dict.pt")
    image_only_model = models.efficientnet_b3(weights=models.EfficientNet_B3_Weights.DEFAULT)
    num_features = image_only_model.classifier[1].in_features
    image_only_model.classifier = nn.Linear(num_features, 1)
    image_only_model.load_state_dict(torch.load(image_model_path, map_location=device))
    image_only_model.to(device)
    image_only_model.eval()
    print("Image-only model loaded from HuggingFace successfully!")

# --- Functions ---
def clean_text(text):
    exceptions = {
        "di", "ke", "ya"
    }
    # ----- BASIC CLEANING -----
    text = re.sub(r"http\S+", "", text)  # Hapus URL
    text = re.sub(r"\n", " ", text)  # Ganti newline dengan spasi
    text = re.sub(r"[^a-zA-Z']", " ", text)  # Hanya sisakan huruf dan apostrof
    text = re.sub(r"\s{2,}", " ", text).strip().lower()  # Hapus spasi ganda, ubah ke lowercase

    # ----- FILTERING -----
    words = text.split()
    filtered_words = [
        w for w in words
        if (len(w) > 2 or w in exceptions)  # Simpan kata >2 huruf atau ada di exceptions
    ]
    text = ' '.join(filtered_words)

    # ----- REMOVE UNWANTED PATTERNS -----
    text = re.sub(r'\b[aeiou]+\b', '', text)  # Hapus kata semua vokal (panjang berapa pun)
    text = re.sub(r'\b[^aeiou\s]+\b', '', text)  # Hapus kata semua konsonan (panjang berapa pun)
    text = re.sub(r'\b\w{20,}\b', '', text)  # Hapus kata sangat panjang (≥20 huruf)
    text = re.sub(r'\s+', ' ', text).strip()  # Bersihkan spasi ekstra

    # check words number
    if len(text.split()) < 5:
        print(f"Cleaned text too short ({len(text.split())} words). Ignoring text.")
        return ""  # empty return to use image-only
    return text

# Fungsi untuk mengambil screenshot viewport
def take_screenshot(url):
    filename = url.replace('https://', '').replace('http://', '').replace('/', '_').replace('.', '_') + '.png'
    filepath = os.path.join(SCREENSHOT_DIR, filename)
    
    try:
        print(f"\n=== [START SCREENSHOT] URL: {url} ===")
        from playwright.sync_api import sync_playwright

        with sync_playwright() as p:
            print("Launching Playwright Chromium...")
            browser = p.chromium.launch()
            page = browser.new_page(
                viewport={"width": 1280, "height": 800},
                user_agent="Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/113.0.0.0 Safari/537.36"
            )
            page.set_default_timeout(60000)
            page.set_extra_http_headers({"Accept-Language": "en-US,en;q=0.9"})

            print("Navigating to URL...")
            page.goto(url, wait_until="networkidle", timeout=60000)
            page.wait_for_timeout(3000)

            print("Taking screenshot (viewport only)...")
            page.screenshot(path=filepath)
            browser.close()
            print(f"Screenshot saved to {filepath}")

        print(f"=== [END SCREENSHOT] ===\n")
        return filepath

    except Exception as e:
        print(f"[ERROR] Failed to take screenshot for URL: {url}")
        print(f"Exception: {e}")
        traceback.print_exc()
        return None

def resize_if_needed(image_path, max_mb=1, target_width=720):
    file_size = os.path.getsize(image_path) / (1024 * 1024)  # dalam MB
    if file_size > max_mb:
        try:
            with Image.open(image_path) as img:
                width, height = img.size
                if width > target_width:
                    ratio = target_width / float(width)
                    new_height = int((float(height) * float(ratio)))
                    img = img.resize((target_width, new_height), Image.Resampling.LANCZOS)
                    img.save(image_path, optimize=True, quality=85)
                    print(f"Image resized to {target_width}x{new_height}")
        except Exception as e:
            print(f"Resize error: {e}")

def extract_text_from_image(image_path):
    try:
        resize_if_needed(image_path, max_mb=1, target_width=720)
        
        # Use Tesseract OCR with Indonesian language
        text = pytesseract.image_to_string(Image.open(image_path), lang='ind')
        print(f"OCR text extracted with Tesseract: {len(text)} characters")
        
        return text.strip()
    except Exception as e:
        print(f"Tesseract OCR error: {e}")
        return ""

def prepare_data_for_model(image_path, text):
    image = Image.open(image_path)
    image_tensor = transform(image).unsqueeze(0).to(device)

    clean_text_data = clean_text(text)
    encoding = tokenizer.encode_plus(
        clean_text_data,
        add_special_tokens=True,
        max_length=128,
        padding='max_length',
        truncation=True,
        return_tensors='pt'
    )

    input_ids = encoding['input_ids'].to(device)
    attention_mask = encoding['attention_mask'].to(device)

    return image_tensor, input_ids, attention_mask

def predict_single_url(url):
    if not url.startswith(('http://', 'https://')):
        url = 'https://' + url
        
    screenshot_path = take_screenshot(url)
    if not screenshot_path:
        return f"Error: Failed to take screenshot for {url}", None

    text = extract_text_from_image(screenshot_path)

    if not text.strip():  # Jika text kosong
        print(f"No OCR text found for {url}. Using Image-Only Model.")
        image = Image.open(screenshot_path)
        image_tensor = transform(image).unsqueeze(0).to(device)

        with torch.no_grad():
            image_logits = image_only_model(image_tensor).squeeze(1)
            image_probs = torch.sigmoid(image_logits)

            threshold = 0.6
            is_gambling = image_probs[0] > threshold

        label = "Gambling" if is_gambling else "Non-Gambling"
        confidence = image_probs[0].item() if is_gambling else 1 - image_probs[0].item()
        print(f"[Image-Only] URL: {url}")
        print(f"Prediction: {label} | Confidence: {confidence:.2f}\n")
        return label, f"Confidence: {confidence:.2f}"

    else:
        image_tensor, input_ids, attention_mask = prepare_data_for_model(screenshot_path, text)

        with torch.no_grad():
            fused_logits, image_logits, text_logits, weights = fusion_model(image_tensor, input_ids, attention_mask)
            fused_probs = torch.sigmoid(fused_logits)
            image_probs = torch.sigmoid(image_logits)
            text_probs = torch.sigmoid(text_logits)

            threshold = 0.6
            is_gambling = fused_probs[0] > threshold

        label = "Gambling" if is_gambling else "Non-Gambling"
        confidence = fused_probs[0].item() if is_gambling else 1 - fused_probs[0].item()

        # ✨ Log detail
        print(f"[Fusion Model] URL: {url}")
        print(f"Image Model Prediction Probability: {image_probs[0]:.2f}")
        print(f"Text Model Prediction Probability: {text_probs[0]:.2f}")
        print(f"Fusion Final Prediction: {label} | Confidence: {confidence:.2f}\n")

        return label, f"Confidence: {confidence:.2f}"

def predict_batch_urls(file_obj):
    results = []
    content = file_obj.read().decode('utf-8')
    urls = [line.strip() for line in content.splitlines() if line.strip()]
    for url in urls:
        label, confidence = predict_single_url(url)
        results.append({"url": url, "label": label, "confidence": confidence})

    df = pd.DataFrame(results)
    print(f"Batch prediction completed for {len(urls)} URLs.")
    return df

# --- Gradio App ---

with gr.Blocks() as app:
    gr.Markdown("# 🕵️ Gambling Website Detection (URL Based)")
    gr.Markdown("### Using Playwright & Tesseract OCR")

    with gr.Tab("Single URL"):
        url_input = gr.Textbox(label="Enter Website URL")
        predict_button = gr.Button("Predict")
        label_output = gr.Label()
        confidence_output = gr.Textbox(label="Confidence", interactive=False)

        predict_button.click(fn=predict_single_url, inputs=url_input, outputs=[label_output, confidence_output])

    with gr.Tab("Batch URLs"):
        file_input = gr.File(label="Upload .txt file with URLs (one per line)")
        batch_predict_button = gr.Button("Batch Predict")
        batch_output = gr.DataFrame()

        batch_predict_button.click(fn=predict_batch_urls, inputs=file_input, outputs=batch_output)

if __name__ == "__main__":
    app.launch(server_name="0.0.0.0", server_port=7860)