Spaces:
Runtime error
Runtime error
import logging | |
import sys | |
import os | |
import json | |
from flask import Flask, request, jsonify | |
from llama_cpp import Llama | |
from huggingface_hub import hf_hub_download | |
# Inisialisasi Flask app | |
app = Flask(__name__) | |
# Konfigurasi Logging | |
logging.basicConfig(stream=sys.stderr, level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
# Set environment variables untuk nonaktifkan cache | |
os.environ["TRANSFORMERS_OFFLINE"] = "1" | |
os.environ["HF_DATASETS_OFFLINE"] = "1" | |
os.environ["HUGGINGFACE_HUB_CACHE"] = "/tmp" # Arahkan cache ke /tmp | |
os.environ["HFC_USER_AGENT_DISABLE_TELEMETRY"] = "1" # Nonaktifkan telemetry | |
# Global Variables | |
MODEL_NAME = "second-state/Qwen3-0.6B-GGUF" | |
MODEL_BASENAME = "Qwen3-0.6B-Q4_K_S.gguf" | |
MODEL_PATH = "/app/models" | |
MODEL_FILE = os.path.join(MODEL_PATH, MODEL_BASENAME) | |
# Load Model (Qwen3-0.6B-GGUF) | |
def load_model(): | |
logger.info("Sedang memuat model GGUF dari lokal...") | |
try: | |
# Pastikan model ada menggunakan huggingface_hub | |
logger.info(f"Memastikan model ada dengan hf_hub_download: {MODEL_NAME}, {MODEL_BASENAME}") | |
hf_hub_download(repo_id=MODEL_NAME, filename=MODEL_BASENAME, local_dir=MODEL_PATH, local_dir_use_symlinks=False) | |
logger.info("Model berhasil diunduh menggunakan hf_hub_download") | |
# Periksa apakah file model ada | |
if not os.path.exists(MODEL_FILE): | |
logger.error(f"File model tidak ditemukan: {MODEL_FILE}") | |
logger.error(f"Cek isi direktori /app/models: {os.listdir('/app/models') if os.path.exists('/app/models') else 'Direktori tidak ditemukan'}") | |
return None | |
logger.info(f"Memuat model dari path: {MODEL_FILE}") | |
llm = Llama( | |
model_path=MODEL_FILE, | |
n_gpu_layers=0, # Jalankan di CPU | |
n_threads=4, | |
verbose=True, | |
n_ctx=1024, | |
) | |
logger.info("Model GGUF berhasil dimuat!") | |
return llm | |
except Exception as e: | |
logger.error(f"Error loading model GGUF: {e}", exc_info=True) | |
return None | |
llm = load_model() | |
def ask_ai(prompt, llm_model): | |
try: | |
if llm_model is None: | |
return "Model gagal dimuat. Periksa log untuk detailnya." | |
# Format prompt untuk Qwen | |
formatted_prompt = f"Human: {prompt}\n<|file_separator|>Assistant:" | |
# Jalankan model | |
output = llm_model( | |
prompt, # formatted_prompt di model gemma ini tidak jalan | |
max_tokens=512, | |
temperature=0.7, | |
top_p=0.9, | |
stop=["<|file_separator|>"], #stop untuk Qwen | |
echo=False, | |
stream=False #Non Stream | |
) | |
# Extract text jawaban | |
jawaban = output['choices'][0]['text'] | |
return jawaban.strip() | |
except Exception as e: | |
logger.error(f"Error selama inferensi: {e}", exc_info=True) | |
return f"Error: {e}" | |
# Endpoint / (untuk menerima POST request) | |
def ask_ai_endpoint(): | |
try: | |
data = request.get_json() # Ambil data JSON dari request body | |
prompt = data.get('prompt') # Ambil prompt dari data JSON | |
if not prompt: | |
return jsonify({"error": "Prompt tidak ditemukan dalam request body"}), 400 | |
jawaban = ask_ai(prompt, llm) # Dapatkan jawaban dari model | |
return jsonify({"jawaban": jawaban}) # Kembalikan jawaban sebagai JSON | |
except Exception as e: | |
logger.error(f"Error pada endpoint /: {e}", exc_info=True) | |
return jsonify({"error": str(e)}), 500 | |
# Tambahkan health check | |
def health_check(): | |
return jsonify({"status": "healthy"}) | |
# Jalankan aplikasi Flask jika dijalankan langsung (untuk testing lokal) | |
if __name__ == '__main__': | |
import os | |
port = int(os.environ.get("PORT", 8501)) | |
app.run(debug=True, host='0.0.0.0', port=port) |