Spaces:
Sleeping
Sleeping
# app.py | |
import torch | |
import numpy as np | |
from PIL import Image | |
import io | |
import gradio as gr | |
from torchvision import models, transforms | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
from huggingface_hub import hf_hub_download | |
from model import CombinedModel, ImageToTextProjector | |
import pydicom | |
import os | |
import gc | |
from fastapi import FastAPI, File, UploadFile, HTTPException | |
from fastapi.middleware.cors import CORSMiddleware | |
from typing import List | |
import base64 | |
from fastapi.responses import JSONResponse | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
HF_TOKEN = os.getenv("HF_TOKEN") | |
os.environ["HF_HOME"] = "/tmp/huggingface_cache" | |
# Model loading | |
tokenizer = AutoTokenizer.from_pretrained("baliddeki/phronesis-ml", token=HF_TOKEN) | |
video_model = models.video.r3d_18(weights="KINETICS400_V1") | |
video_model.fc = torch.nn.Linear(video_model.fc.in_features, 512) | |
report_generator = AutoModelForSeq2SeqLM.from_pretrained("GanjinZero/biobart-v2-base") | |
projector = ImageToTextProjector(512, report_generator.config.d_model) | |
num_classes = 4 | |
class_names = ["acute", "normal", "chronic", "lacunar"] | |
combined_model = CombinedModel(video_model, report_generator, num_classes, projector, tokenizer) | |
model_file = hf_hub_download("baliddeki/phronesis-ml", "pytorch_model.bin", token=HF_TOKEN) | |
state_dict = torch.load(model_file, map_location=device) | |
combined_model.load_state_dict(state_dict) | |
combined_model.to(device) | |
combined_model.eval() | |
image_transform = transforms.Compose([ | |
transforms.Resize((112, 112)), | |
transforms.ToTensor(), | |
transforms.Normalize(mean=[0.43216, 0.394666, 0.37645], std=[0.22803, 0.22145, 0.216989]), | |
]) | |
def dicom_to_image(file_bytes): | |
"""Convert DICOM file bytes to PIL Image""" | |
dicom_file = pydicom.dcmread(io.BytesIO(file_bytes)) | |
pixel_array = dicom_file.pixel_array.astype(np.float32) | |
pixel_array = ((pixel_array - pixel_array.min()) / pixel_array.ptp()) * 255.0 | |
pixel_array = pixel_array.astype(np.uint8) | |
return Image.fromarray(pixel_array).convert("RGB") | |
def process_images(file_data_list): | |
"""Core image processing logic used by both Gradio and FastAPI""" | |
if not file_data_list: | |
return "No images uploaded.", "" | |
processed_imgs = [] | |
for file_data in file_data_list: | |
filename = file_data.get('filename', '').lower() | |
file_content = file_data.get('content') | |
try: | |
if filename.endswith((".dcm", ".ima")): | |
img = dicom_to_image(file_content) | |
else: | |
img = Image.open(io.BytesIO(file_content)).convert("RGB") | |
processed_imgs.append(img) | |
except Exception as e: | |
print(f"Error processing file {filename}: {e}") | |
continue | |
if not processed_imgs: | |
return "No valid images processed.", "" | |
# Sample frames for video model | |
n_frames = 16 | |
if len(processed_imgs) >= n_frames: | |
images_sampled = [ | |
processed_imgs[i] | |
for i in np.linspace(0, len(processed_imgs)-1, n_frames, dtype=int) | |
] | |
else: | |
images_sampled = processed_imgs + [processed_imgs[-1]] * (n_frames - len(processed_imgs)) | |
# Transform images to tensors | |
tensor_imgs = [image_transform(img) for img in images_sampled] | |
input_tensor = torch.stack(tensor_imgs).permute(1, 0, 2, 3).unsqueeze(0).to(device) | |
# Model inference | |
with torch.no_grad(): | |
class_logits, report, _ = combined_model(input_tensor) | |
class_pred = torch.argmax(class_logits, dim=1).item() | |
class_name = class_names[class_pred] | |
# Cleanup | |
gc.collect() | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
return class_name, report[0] if report else "No report generated." | |
def predict_gradio(files): | |
"""Gradio interface wrapper""" | |
if not files: | |
return "No images uploaded.", "" | |
file_data_list = [] | |
for file_obj in files: | |
try: | |
file_content = file_obj.read() if hasattr(file_obj, 'read') else open(file_obj.name, 'rb').read() | |
file_data_list.append({ | |
'filename': file_obj.name if hasattr(file_obj, 'name') else str(file_obj), | |
'content': file_content | |
}) | |
except Exception as e: | |
print(f"Error reading file: {e}") | |
continue | |
return process_images(file_data_list) | |
# Create FastAPI app | |
app = FastAPI( | |
title="Phronesis ML API", | |
description="Medical Image Analysis API with Gradio Interface", | |
version="1.0.0" | |
) | |
# Add CORS middleware | |
app.add_middleware( | |
CORSMiddleware, | |
allow_origins=["*"], | |
allow_credentials=True, | |
allow_methods=["*"], | |
allow_headers=["*"], | |
) | |
async def root(): | |
"""Root endpoint""" | |
return { | |
"message": "Phronesis ML API", | |
"status": "running", | |
"endpoints": { | |
"predict": "/predict", | |
"health": "/health", | |
"gradio": "/gradio" | |
} | |
} | |
async def health_check(): | |
"""Health check endpoint""" | |
return { | |
"status": "healthy", | |
"model_loaded": True, | |
"device": str(device) | |
} | |
async def predict_api(files: List[UploadFile] = File(...)): | |
""" | |
API endpoint for medical image prediction | |
Args: | |
files: List of uploaded image files (DICOM, JPG, PNG, etc.) | |
Returns: | |
JSON response with predicted class and generated report | |
""" | |
try: | |
if not files: | |
raise HTTPException(status_code=400, detail="No files uploaded") | |
# Process uploaded files | |
file_data_list = [] | |
for file in files: | |
try: | |
content = await file.read() | |
file_data_list.append({ | |
'filename': file.filename or 'unknown', | |
'content': content | |
}) | |
except Exception as e: | |
print(f"Error reading uploaded file {file.filename}: {e}") | |
continue | |
if not file_data_list: | |
raise HTTPException(status_code=400, detail="No valid files processed") | |
# Get predictions | |
predicted_class, generated_report = process_images(file_data_list) | |
# Return results | |
return JSONResponse(content={ | |
"status": "success", | |
"data": { | |
"predicted_class": predicted_class, | |
"generated_report": generated_report, | |
"processed_files": len(file_data_list) | |
} | |
}) | |
except HTTPException: | |
raise | |
except Exception as e: | |
print(f"Prediction error: {e}") | |
raise HTTPException(status_code=500, detail=f"Prediction failed: {str(e)}") | |
async def global_exception_handler(request, exc): | |
"""Global exception handler""" | |
return JSONResponse( | |
status_code=500, | |
content={ | |
"status": "error", | |
"message": "Internal server error", | |
"detail": str(exc) | |
} | |
) | |
# Create Gradio interface | |
demo = gr.Interface( | |
fn=predict_gradio, | |
inputs=gr.File( | |
file_count="multiple", | |
file_types=[".dcm", ".ima", ".jpg", ".jpeg", ".png", ".bmp"], | |
label="Upload Medical Images" | |
), | |
outputs=[ | |
gr.Textbox(label="Predicted Class"), | |
gr.Textbox(label="Generated Report", lines=5) | |
], | |
title="🩺 Phronesis Medical Report Generator", | |
description=""" | |
Upload CT scan images to generate a medical report and classification. | |
**Supported formats:** DICOM (.dcm, .ima), JPEG, PNG, BMP | |
**API Endpoint:** `/predict` (POST) | |
""", | |
examples=[], | |
allow_flagging="never" | |
) | |
# Mount Gradio app to FastAPI | |
app = gr.mount_gradio_app(app, demo, path="/gradio") | |
# Launch configuration | |
if __name__ == "__main__": | |
import uvicorn | |
# For local development | |
# uvicorn.run(app, host="0.0.0.0", port=7860) | |
# For Hugging Face Spaces | |
demo.launch( | |
server_name="0.0.0.0", | |
server_port=7860, | |
share=True, | |
show_error=True | |
) |