baliddeki's picture
api with gradido
a0b8974
# app.py
import torch
import numpy as np
from PIL import Image
import io
import gradio as gr
from torchvision import models, transforms
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from huggingface_hub import hf_hub_download
from model import CombinedModel, ImageToTextProjector
import pydicom
import os
import gc
from fastapi import FastAPI, File, UploadFile, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from typing import List
import base64
from fastapi.responses import JSONResponse
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
HF_TOKEN = os.getenv("HF_TOKEN")
os.environ["HF_HOME"] = "/tmp/huggingface_cache"
# Model loading
tokenizer = AutoTokenizer.from_pretrained("baliddeki/phronesis-ml", token=HF_TOKEN)
video_model = models.video.r3d_18(weights="KINETICS400_V1")
video_model.fc = torch.nn.Linear(video_model.fc.in_features, 512)
report_generator = AutoModelForSeq2SeqLM.from_pretrained("GanjinZero/biobart-v2-base")
projector = ImageToTextProjector(512, report_generator.config.d_model)
num_classes = 4
class_names = ["acute", "normal", "chronic", "lacunar"]
combined_model = CombinedModel(video_model, report_generator, num_classes, projector, tokenizer)
model_file = hf_hub_download("baliddeki/phronesis-ml", "pytorch_model.bin", token=HF_TOKEN)
state_dict = torch.load(model_file, map_location=device)
combined_model.load_state_dict(state_dict)
combined_model.to(device)
combined_model.eval()
image_transform = transforms.Compose([
transforms.Resize((112, 112)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.43216, 0.394666, 0.37645], std=[0.22803, 0.22145, 0.216989]),
])
def dicom_to_image(file_bytes):
"""Convert DICOM file bytes to PIL Image"""
dicom_file = pydicom.dcmread(io.BytesIO(file_bytes))
pixel_array = dicom_file.pixel_array.astype(np.float32)
pixel_array = ((pixel_array - pixel_array.min()) / pixel_array.ptp()) * 255.0
pixel_array = pixel_array.astype(np.uint8)
return Image.fromarray(pixel_array).convert("RGB")
def process_images(file_data_list):
"""Core image processing logic used by both Gradio and FastAPI"""
if not file_data_list:
return "No images uploaded.", ""
processed_imgs = []
for file_data in file_data_list:
filename = file_data.get('filename', '').lower()
file_content = file_data.get('content')
try:
if filename.endswith((".dcm", ".ima")):
img = dicom_to_image(file_content)
else:
img = Image.open(io.BytesIO(file_content)).convert("RGB")
processed_imgs.append(img)
except Exception as e:
print(f"Error processing file {filename}: {e}")
continue
if not processed_imgs:
return "No valid images processed.", ""
# Sample frames for video model
n_frames = 16
if len(processed_imgs) >= n_frames:
images_sampled = [
processed_imgs[i]
for i in np.linspace(0, len(processed_imgs)-1, n_frames, dtype=int)
]
else:
images_sampled = processed_imgs + [processed_imgs[-1]] * (n_frames - len(processed_imgs))
# Transform images to tensors
tensor_imgs = [image_transform(img) for img in images_sampled]
input_tensor = torch.stack(tensor_imgs).permute(1, 0, 2, 3).unsqueeze(0).to(device)
# Model inference
with torch.no_grad():
class_logits, report, _ = combined_model(input_tensor)
class_pred = torch.argmax(class_logits, dim=1).item()
class_name = class_names[class_pred]
# Cleanup
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
return class_name, report[0] if report else "No report generated."
def predict_gradio(files):
"""Gradio interface wrapper"""
if not files:
return "No images uploaded.", ""
file_data_list = []
for file_obj in files:
try:
file_content = file_obj.read() if hasattr(file_obj, 'read') else open(file_obj.name, 'rb').read()
file_data_list.append({
'filename': file_obj.name if hasattr(file_obj, 'name') else str(file_obj),
'content': file_content
})
except Exception as e:
print(f"Error reading file: {e}")
continue
return process_images(file_data_list)
# Create FastAPI app
app = FastAPI(
title="Phronesis ML API",
description="Medical Image Analysis API with Gradio Interface",
version="1.0.0"
)
# Add CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
@app.get("/")
async def root():
"""Root endpoint"""
return {
"message": "Phronesis ML API",
"status": "running",
"endpoints": {
"predict": "/predict",
"health": "/health",
"gradio": "/gradio"
}
}
@app.get("/health")
async def health_check():
"""Health check endpoint"""
return {
"status": "healthy",
"model_loaded": True,
"device": str(device)
}
@app.post("/predict")
async def predict_api(files: List[UploadFile] = File(...)):
"""
API endpoint for medical image prediction
Args:
files: List of uploaded image files (DICOM, JPG, PNG, etc.)
Returns:
JSON response with predicted class and generated report
"""
try:
if not files:
raise HTTPException(status_code=400, detail="No files uploaded")
# Process uploaded files
file_data_list = []
for file in files:
try:
content = await file.read()
file_data_list.append({
'filename': file.filename or 'unknown',
'content': content
})
except Exception as e:
print(f"Error reading uploaded file {file.filename}: {e}")
continue
if not file_data_list:
raise HTTPException(status_code=400, detail="No valid files processed")
# Get predictions
predicted_class, generated_report = process_images(file_data_list)
# Return results
return JSONResponse(content={
"status": "success",
"data": {
"predicted_class": predicted_class,
"generated_report": generated_report,
"processed_files": len(file_data_list)
}
})
except HTTPException:
raise
except Exception as e:
print(f"Prediction error: {e}")
raise HTTPException(status_code=500, detail=f"Prediction failed: {str(e)}")
@app.exception_handler(Exception)
async def global_exception_handler(request, exc):
"""Global exception handler"""
return JSONResponse(
status_code=500,
content={
"status": "error",
"message": "Internal server error",
"detail": str(exc)
}
)
# Create Gradio interface
demo = gr.Interface(
fn=predict_gradio,
inputs=gr.File(
file_count="multiple",
file_types=[".dcm", ".ima", ".jpg", ".jpeg", ".png", ".bmp"],
label="Upload Medical Images"
),
outputs=[
gr.Textbox(label="Predicted Class"),
gr.Textbox(label="Generated Report", lines=5)
],
title="🩺 Phronesis Medical Report Generator",
description="""
Upload CT scan images to generate a medical report and classification.
**Supported formats:** DICOM (.dcm, .ima), JPEG, PNG, BMP
**API Endpoint:** `/predict` (POST)
""",
examples=[],
allow_flagging="never"
)
# Mount Gradio app to FastAPI
app = gr.mount_gradio_app(app, demo, path="/gradio")
# Launch configuration
if __name__ == "__main__":
import uvicorn
# For local development
# uvicorn.run(app, host="0.0.0.0", port=7860)
# For Hugging Face Spaces
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=True,
show_error=True
)