File size: 17,955 Bytes
d0490ec
6efe12c
d0490ec
089e88f
d0490ec
 
 
d62ee7c
6efe12c
d0490ec
 
 
97e4a14
d0490ec
 
 
 
6efe12c
d0490ec
 
 
6efe12c
d0490ec
d62ee7c
 
 
6efe12c
d0490ec
6efe12c
d0490ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6efe12c
d0490ec
 
 
6efe12c
d0490ec
 
 
 
 
 
 
 
 
 
 
 
 
 
6efe12c
d0490ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6efe12c
d0490ec
 
 
 
 
6efe12c
d0490ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6efe12c
d0490ec
 
 
 
 
 
 
6efe12c
d0490ec
 
 
 
 
 
 
 
 
 
 
6efe12c
d0490ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6efe12c
 
d0490ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
import os
import gradio as gr
import requests
# import math
import inspect
import pandas as pd
import datetime
# from dotenv import load_dotenv

from langchain.tools import tool, get_all_tools
from typing import TypedDict, Annotated
from langgraph.graph.message import add_messages
# from langchain_core.messages import AnyMessage, HumanMessage, AIMessage
from langgraph.prebuilt import ToolNode
from langgraph.graph import START, StateGraph, END
from langgraph.prebuilt import tools_condition
from langchain_huggingface import HuggingFaceEndpoint, ChatHuggingFace

## # Load environment variables from .env file
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

# Load the environment variables
# load_dotenv()
HF_ACCESS_KEY = os.getenv('HF_ACCESS_KEY')
WEATHER_API_KEY = os.getenv('WEATHER_API_KEY')

########## ----- DEFINING TOOLS -----##########

# --- TOOL 1: Web Search Tool (DuckDuckGo) ---
@tool
def search_tool(query: str) -> str:
    """Answer general knowledge or current events queries using DuckDuckGo."""
    url = f"https://api.duckduckgo.com/?q={query}&format=json&no_html=1"
    try:
        resp = requests.get(url, timeout=20)
        resp.raise_for_status()
        data = resp.json()
        for key in ["AbstractText", "Answer", "Definition"]:
            if data.get(key):
                return data[key].split(".")[0]
        return "no_answer"
    except Exception:
        return "error"

# when you use the @tool decorator from langchain.tools, the tool.name and tool.description are automatically extracted from your function
# tool.name is set to the function name (e.g., `search_tool`), and 
# tool.description is set to the docstring of the function  (the triple-quoted string right under def ...) (e.g., "Answer general knowledge or current events queries using DuckDuckGo.").

# --- TOOL 2: Weather Tool (OpenWeatherMap) ---
@tool
def get_weather(city: str) -> str:
    """Get current temperature in Celsius for a city."""
    import os
    api_key = os.environ.get("WEATHER_API_KEY")
    url = f"https://api.openweathermap.org/data/2.5/weather?q={city}&appid={WEATHER_API_KEY}&units=metric"
    try:
        resp = requests.get(url, timeout=20)
        resp.raise_for_status()
        data = resp.json()
        return str(round(data["main"]["temp"]))
    except Exception:
        return "error"

# --- TOOL 3: Calculator Tool ---
@tool
def calculator(expression: str) -> str:
    """Evaluate math expressions."""
    try:
        allowed = "0123456789+-*/(). "
        if not all(c in allowed for c in expression):
            return "error"
        result = eval(expression, {"__builtins__": None}, {})
        return str(result)
    except Exception:
        return "error"
    
# --- TOOL 4: Unit Conversion Tool ---
@tool
def convert_units(args: str) -> str:
    """
    Convert between metric and imperial units (length, mass, temperature).
    Input format: '<value> <from_unit> to <to_unit>', e.g. '10 meters to feet'
    """
    try:
        parts = args.lower().split()
        value = float(parts[0])
        from_unit = parts[1]
        to_unit = parts[3]
        conversions = {
            ("meters", "feet"): lambda v: v * 3.28084,
            ("feet", "meters"): lambda v: v / 3.28084,
            ("kg", "lb"): lambda v: v * 2.20462,
            ("lb", "kg"): lambda v: v / 2.20462,
            ("celsius", "fahrenheit"): lambda v: v * 9/5 + 32,
            ("fahrenheit", "celsius"): lambda v: (v - 32) * 5/9,
        }
        func = conversions.get((from_unit, to_unit))
        if func:
            return str(round(func(value), 2))
        return "error"
    except Exception:
        return "error"

# --- TOOL 5: Date & Time Tool ---
@tool
def get_time(_: str = "") -> str:
    """Get current UTC time as HH:MM."""
    return datetime.datetime.utc().strftime("%H:%M")

@tool
def get_date(_: str = "") -> str:
    """Get current date as YYYY-MM-DD."""
    return datetime.datetime.utc().strftime("%Y-%m-%d")

# --- TOOL 6: Wikipedia Summary Tool ---
@tool
def wikipedia_summary(query: str) -> str:
    """Get a short summary of a topic from Wikipedia."""
    url = f"https://en.wikipedia.org/api/rest_v1/page/summary/{query.replace(' ', '_')}"
    try:
        resp = requests.get(url, timeout=20)
        resp.raise_for_status()
        data = resp.json()
        return data.get("extract", "no_answer").split(".")[0]
    except Exception:
        return "error"

# --- TOOL 7: Dictionary Tool ---
@tool
def dictionary_lookup(word: str) -> str:
    """Get the definition of an English word."""
    url = f"https://api.dictionaryapi.dev/api/v2/entries/en/{word}"
    try:
        resp = requests.get(url, timeout=20)
        resp.raise_for_status()
        data = resp.json()
        return data[0]["meanings"][0]["definitions"][0]["definition"]
    except Exception:
        return "error"
    
# --- TOOL 8: Currency Conversion Tool ---
@tool
def currency_convert(args: str) -> str:
    """
    Convert an amount from one currency to another.
    Input format: '<amount> <from_currency> to <to_currency>', e.g. '100 USD to EUR'
    """
    try:
        parts = args.upper().split()
        amount = float(parts[0])
        from_currency = parts[1]
        to_currency = parts[3]
        url = f"https://api.exchangerate.host/convert?from={from_currency}&to={to_currency}&amount={amount}"
        resp = requests.get(url, timeout=20)
        resp.raise_for_status()
        data = resp.json()
        return str(round(data["result"], 2))
    except Exception:
        return "error"

##-- Tool Discovery ---
# Use @tool for each function.
# Use get_all_tools() to auto-discover all decorated tools.
tools_list = get_all_tools()

tool_descriptions = "\n".join(f"- {tool.name}: {tool.description}" for tool in tools_list)


## --
# --- System Prompt for the Agent ---
system_prompt = f"""
You are an intelligent assistant with access to the following tools:

{tool_descriptions}

For every question, always follow this process (your internal thinking/execution process):

1. Thought: Reflect step by step on what the user is asking and what information or calculation is needed. Decide if you need to use a tool or can answer directly.
2. Action: If a tool is needed, specify which tool to use and with what input. If not, state "No action needed".
3. Observation: If you used a tool, report the tool's output here. If not, write "N/A".
4. Answer: Give the final answer as a single value (number, string, or comma-separated list), with no extra explanation or units unless requested.

Your Final Answer should be just [Answer] and should not include any additional text or explanation. Final Answer should be a single value (number, string, or comma-separated list).

Examples:

Q: What is 7 * (3 + 2)?
Thought: The user is asking for a math calculation. I should use the calculator tool.
Action: calculator("7 * (3 + 2)")
Observation: 35
Answer: 35

Your Output (Final Answer) for this question should be: '35'.

Q: What’s the weather in Tokyo?
Thought: The user wants the current temperature in Tokyo. I should use the get_weather tool.
Action: get_weather("Tokyo")
Observation: 22
Answer: 22

Your Output (Final Answer) for this question should be: '22'.

Q: What is the capital of France?
Thought: The user is asking for a factual answer. I can answer directly.
Action: No action needed
Observation: N/A
Answer: Paris

Your Output (Final Answer) for this question should be: 'Paris'.

Q: Convert 10 meters to feet.
Thought: The user wants to convert units. I should use the convert_units tool.
Action: convert_units("10 meters to feet")
Observation: 32.81
Answer: 32.81

Your Output (Final Answer) for this question should be: '32.81'.

Instructions:
- Always follow the Thought → Action → Observation → Answer for your internal reasoning and execution before giving final answer.
- Use a tool only if necessary, and don't use multiple tools in a call. Don't use a tool if you can answer directly without hallucination. 
- Always return your final answer as a single value, with no extra explanation.
- Be concise and accurate.
"""

## --- Initialize Hugging Face Model ---
# Generate the chat interface, including the tools
llm = HuggingFaceEndpoint(
    repo_id="Qwen/Qwen2.5-Coder-32B-Instruct",
    huggingfacehub_api_token=HF_ACCESS_KEY,
    system_prompt=system_prompt,
)
# chat = ChatHuggingFace(llm=llm, verbose=True)
# tools = [search_tool, fetch_weather]
# chat_with_tools = chat.bind_tools(tools)


##
# --- LANGGRAPH AGENT SETUP ---

# Define the state for the graph
class AgentState(dict):
    pass

# Define the main node (agent logic)
def agent_node(state: AgentState) -> AgentState:
    question = state["question"]
    # The LLM will decide which tool to use based on the prompt and tools
    # response = chat_with_tools.invoke(question) # use this if using ChatHuggingFace with binding option to tools
    response = llm.invoke(question, tools=tools_list)
    return AgentState({"question": question, "answer": response})

# Build the graph
graph = StateGraph(AgentState)
graph.add_node("agent", agent_node)
# graph.add_node("tools", ToolNode(tools)) #use this when using ChatHuggingFace with binding option to tools
# graph.add_edge(START, "agent") #alternatively use the below with set_entry_point
graph.set_entry_point("agent")
graph.add_edge("agent", END)
my_agent = graph.compile()

# Or try simply with Graph instead of StateGraph
# from langgraph.graph import Graph
# graph = Graph(llm=llm, tools=tools_list)
# def agent(question: str) -> str:
#     return graph.run(question)

## --- AGENT CALL FUNCTION ---
def agent(question: str) -> str:
    state = AgentState({"question": question})
    result = my_agent.invoke(state)
    return result["answer"]



## --
def run_and_submit_all( profile: gr.OAuthProfile | None):
    """
    Fetches all questions, runs the BasicAgent on them, submits all answers,
    and displays the results.
    """
    # --- Determine HF Space Runtime URL and Repo URL ---
    space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code

    if profile:
        username= f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    """
    # 1. Instantiate Agent ( modify this part to create your agent)
    try:
        agent = BasicAgent()
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None
    # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
    """
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(agent_code)

    # 2. Fetch Questions
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
             print("Fetched questions list is empty.")
             return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except requests.exceptions.RequestException as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None
    except requests.exceptions.JSONDecodeError as e:
         print(f"Error decoding JSON response from questions endpoint: {e}")
         print(f"Response text: {response.text[:500]}")
         return f"Error decoding server response for questions: {e}", None
    except Exception as e:
        print(f"An unexpected error occurred fetching questions: {e}")
        return f"An unexpected error occurred fetching questions: {e}", None

    # 3. Run your Agent
    results_log = []
    answers_payload = []
    print(f"Running agent on {len(questions_data)} questions...")
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        if not task_id or question_text is None:
            print(f"Skipping item with missing task_id or question: {item}")
            continue
        try:
            submitted_answer = agent(question_text)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
        except Exception as e:
             print(f"Error running agent on task {task_id}: {e}")
             results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})

    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    # 4. Prepare Submission 
    submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
    status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
    print(status_update)

    # 5. Submit
    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        print("Submission successful.")
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except requests.exceptions.HTTPError as e:
        error_detail = f"Server responded with status {e.response.status_code}."
        try:
            error_json = e.response.json()
            error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
        except requests.exceptions.JSONDecodeError:
            error_detail += f" Response: {e.response.text[:500]}"
        status_message = f"Submission Failed: {error_detail}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.Timeout:
        status_message = "Submission Failed: The request timed out."
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.RequestException as e:
        status_message = f"Submission Failed: Network error - {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except Exception as e:
        status_message = f"An unexpected error occurred during submission: {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df


# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
    gr.Markdown("# Basic Agent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**

        1.  Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
        2.  Log in to your Hugging Face account using the button below. This uses your HF username for submission.
        3.  Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.

        ---
        **Disclaimers:**
        Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
        This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
        """
    )

    gr.LoginButton()

    run_button = gr.Button("Run Evaluation & Submit All Answers")

    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    # Removed max_rows=10 from DataFrame constructor
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    # Check for SPACE_HOST and SPACE_ID at startup for information
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup

    if space_host_startup:
        print(f"✅ SPACE_HOST found: {space_host_startup}")
        print(f"   Runtime URL should be: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️  SPACE_HOST environment variable not found (running locally?).")

    if space_id_startup: # Print repo URLs if SPACE_ID is found
        print(f"✅ SPACE_ID found: {space_id_startup}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
        print(f"   Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
    else:
        print("ℹ️  SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")

    print("-"*(60 + len(" App Starting ")) + "\n")

    print("Launching Gradio Interface for Basic Agent Evaluation...")
    demo.launch(debug=True, share=False)