File size: 7,025 Bytes
10e9b7d
 
eccf8e4
3c4371f
10e9b7d
fd09c06
936e8f7
 
e80aab9
3db6293
fd09c06
 
e80aab9
936e8f7
31243f4
936e8f7
fd09c06
 
31243f4
7d65c66
936e8f7
 
fd09c06
936e8f7
 
 
 
 
 
 
 
 
 
7e4a06b
31243f4
 
e80aab9
fd09c06
936e8f7
31243f4
936e8f7
31243f4
936e8f7
 
 
 
36ed51a
936e8f7
3c4371f
7d65c66
31243f4
eccf8e4
936e8f7
7d65c66
31243f4
 
3c4371f
 
31243f4
e80aab9
936e8f7
 
 
3c4371f
936e8f7
 
7d65c66
936e8f7
e80aab9
fd09c06
7d65c66
 
3c4371f
31243f4
 
 
fd09c06
 
 
 
31243f4
 
 
fd09c06
 
 
 
 
 
 
31243f4
fd09c06
 
7d65c66
 
31243f4
 
7d65c66
31243f4
 
 
 
b177367
7d65c66
3c4371f
31243f4
e80aab9
7d65c66
31243f4
e80aab9
fd09c06
e80aab9
 
31243f4
e80aab9
 
3c4371f
 
 
e80aab9
 
31243f4
 
e80aab9
3c4371f
e80aab9
 
3c4371f
e80aab9
7d65c66
3c4371f
31243f4
7d65c66
31243f4
e80aab9
31243f4
 
 
 
e80aab9
fd09c06
e80aab9
fd09c06
0ee0419
e514fd7
 
fd09c06
 
 
 
 
e514fd7
e80aab9
7e4a06b
e80aab9
31243f4
e80aab9
9088b99
7d65c66
e80aab9
31243f4
 
 
e80aab9
 
 
3c4371f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import os
import gradio as gr
import requests
import pandas as pd

# Import your upgraded agent
from agent import GeminiAgent

# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# This is the security gate. Only this user can run submissions.
MY_HF_USERNAME = "benjipeng"

def run_and_submit_all(profile: gr.OAuthProfile | None):
    """
    Fetches all questions, runs the GeminiAgent on them, submits all answers,
    and displays the results. This function is restricted to a specific user and
    provides file context to the agent.
    """
    # --- Determine HF Space Runtime URL and Repo URL ---
    space_id = os.getenv("SPACE_ID")

    # --- User Authentication and Authorization ---
    if not profile:
        return "Please Login to Hugging Face with the button to run the evaluation.", None
    
    username = profile.username
    print(f"User logged in: {username}")

    if username != MY_HF_USERNAME:
        print(f"Access denied for user: {username}. Allowed user is {MY_HF_USERNAME}.")
        return f"Error: This Space is configured for a specific user. Access denied for '{username}'.", None
    
    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    # 1. Instantiate Agent
    print("Instantiating agent...")
    try:
        agent = GeminiAgent()
    except Exception as e:
        error_msg = f"Error initializing agent: {e}"
        print(error_msg)
        return error_msg, None
    
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(f"Code link for submission: {agent_code}")

    # 2. Fetch Questions
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=20)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
             print("Fetched questions list is empty.")
             return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except requests.exceptions.RequestException as e:
        error_msg = f"Error fetching questions: {e}"
        print(error_msg)
        return error_msg, None
    except requests.exceptions.JSONDecodeError as e:
         error_msg = f"Error decoding server response for questions: {e}"
         print(error_msg)
         print(f"Response text: {response.text[:500]}")
         return error_msg, None

    # 3. Run your Agent (with context injection)
    results_log = []
    answers_payload = []
    print(f"Running agent on {len(questions_data)} questions...")
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        
        # This is the key improvement: check if a file is associated with the question
        has_file = item.get("file", None) is not None
        
        if not task_id or question_text is None:
            print(f"Skipping item with missing task_id or question: {item}")
            continue

        # Modify the question to give the agent context about the file's existence
        if has_file:
            modified_question = f"{question_text}\n\n[Agent Note: A file is attached to this question. Use the 'read_file_from_api' tool to access it if needed.]"
        else:
            modified_question = question_text

        try:
            # Pass BOTH the modified question and the task_id to the agent
            submitted_answer = agent(modified_question, task_id)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
        except Exception as e:
             print(f"Error running agent on task {task_id}: {e}")
             results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})

    if not answers_payload:
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    # 4. Prepare Submission 
    submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
    status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
    print(status_update)

    # 5. Submit
    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=120) # Increased timeout
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        print("Submission successful.")
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except requests.exceptions.HTTPError as e:
        error_detail = f"Server responded with status {e.response.status_code}."
        try:
            error_json = e.response.json()
            error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
        except requests.exceptions.JSONDecodeError:
            error_detail += f" Response: {e.response.text[:500]}"
        status_message = f"Submission Failed: {error_detail}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.RequestException as e:
        status_message = f"Submission Failed: Network error - {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df

# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
    gr.Markdown("# Gemini ReAct Agent for GAIA")
    gr.Markdown(
        """
        **Instructions:**
        1.  Log in using the Hugging Face login button below.
        2.  Click 'Run Evaluation & Submit' to start the process.
        3.  The agent will fetch all 20 questions, reason about them step-by-step, use tools (like web search and a file reader), and submit the final answers for scoring.

        **Note:** This process can take several minutes. Please be patient.
        """
    )
    gr.LoginButton()

    run_button = gr.Button("Run Evaluation & Submit All Answers")

    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    demo.launch(debug=True, share=False)