Spaces:
Sleeping
Sleeping
File size: 7,025 Bytes
10e9b7d eccf8e4 3c4371f 10e9b7d fd09c06 936e8f7 e80aab9 3db6293 fd09c06 e80aab9 936e8f7 31243f4 936e8f7 fd09c06 31243f4 7d65c66 936e8f7 fd09c06 936e8f7 7e4a06b 31243f4 e80aab9 fd09c06 936e8f7 31243f4 936e8f7 31243f4 936e8f7 36ed51a 936e8f7 3c4371f 7d65c66 31243f4 eccf8e4 936e8f7 7d65c66 31243f4 3c4371f 31243f4 e80aab9 936e8f7 3c4371f 936e8f7 7d65c66 936e8f7 e80aab9 fd09c06 7d65c66 3c4371f 31243f4 fd09c06 31243f4 fd09c06 31243f4 fd09c06 7d65c66 31243f4 7d65c66 31243f4 b177367 7d65c66 3c4371f 31243f4 e80aab9 7d65c66 31243f4 e80aab9 fd09c06 e80aab9 31243f4 e80aab9 3c4371f e80aab9 31243f4 e80aab9 3c4371f e80aab9 3c4371f e80aab9 7d65c66 3c4371f 31243f4 7d65c66 31243f4 e80aab9 31243f4 e80aab9 fd09c06 e80aab9 fd09c06 0ee0419 e514fd7 fd09c06 e514fd7 e80aab9 7e4a06b e80aab9 31243f4 e80aab9 9088b99 7d65c66 e80aab9 31243f4 e80aab9 3c4371f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
import os
import gradio as gr
import requests
import pandas as pd
# Import your upgraded agent
from agent import GeminiAgent
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# This is the security gate. Only this user can run submissions.
MY_HF_USERNAME = "benjipeng"
def run_and_submit_all(profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the GeminiAgent on them, submits all answers,
and displays the results. This function is restricted to a specific user and
provides file context to the agent.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID")
# --- User Authentication and Authorization ---
if not profile:
return "Please Login to Hugging Face with the button to run the evaluation.", None
username = profile.username
print(f"User logged in: {username}")
if username != MY_HF_USERNAME:
print(f"Access denied for user: {username}. Allowed user is {MY_HF_USERNAME}.")
return f"Error: This Space is configured for a specific user. Access denied for '{username}'.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent
print("Instantiating agent...")
try:
agent = GeminiAgent()
except Exception as e:
error_msg = f"Error initializing agent: {e}"
print(error_msg)
return error_msg, None
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(f"Code link for submission: {agent_code}")
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=20)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
error_msg = f"Error fetching questions: {e}"
print(error_msg)
return error_msg, None
except requests.exceptions.JSONDecodeError as e:
error_msg = f"Error decoding server response for questions: {e}"
print(error_msg)
print(f"Response text: {response.text[:500]}")
return error_msg, None
# 3. Run your Agent (with context injection)
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
# This is the key improvement: check if a file is associated with the question
has_file = item.get("file", None) is not None
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
# Modify the question to give the agent context about the file's existence
if has_file:
modified_question = f"{question_text}\n\n[Agent Note: A file is attached to this question. Use the 'read_file_from_api' tool to access it if needed.]"
else:
modified_question = question_text
try:
# Pass BOTH the modified question and the task_id to the agent
submitted_answer = agent(modified_question, task_id)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=120) # Increased timeout
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Gemini ReAct Agent for GAIA")
gr.Markdown(
"""
**Instructions:**
1. Log in using the Hugging Face login button below.
2. Click 'Run Evaluation & Submit' to start the process.
3. The agent will fetch all 20 questions, reason about them step-by-step, use tools (like web search and a file reader), and submit the final answers for scoring.
**Note:** This process can take several minutes. Please be patient.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
demo.launch(debug=True, share=False) |