Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
import requests | |
import pandas as pd | |
# --- Import your new agent --- | |
from agent import GeminiAgent | |
# --- Constants --- | |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
MY_HF_USERNAME = "benjipeng" # Your Hugging Face username | |
def run_and_submit_all(profile: gr.OAuthProfile | None): | |
""" | |
Fetches all questions, runs the GeminiAgent on them, submits all answers, | |
and displays the results. This function is restricted to a specific user. | |
""" | |
# --- Determine HF Space Runtime URL and Repo URL --- | |
space_id = os.getenv("SPACE_ID") | |
if not profile: | |
return "Please Login to Hugging Face with the button to run the evaluation.", None | |
username = profile.username | |
print(f"User logged in: {username}") | |
# --- NEW: Restrict submission to a specific user --- | |
if username != MY_HF_USERNAME: | |
print(f"Access denied for user: {username}. Allowed user is {MY_HF_USERNAME}.") | |
return f"Error: This Space is configured for a specific user. Access denied for '{username}'.", None | |
api_url = DEFAULT_API_URL | |
questions_url = f"{api_url}/questions" | |
submit_url = f"{api_url}/submit" | |
# 1. Instantiate your GeminiAgent | |
# The agent will fail to initialize if the GEMINI_API_KEY secret is not set. | |
print("Instantiating agent...") | |
try: | |
agent = GeminiAgent() | |
except Exception as e: | |
error_msg = f"Error initializing agent: {e}" | |
print(error_msg) | |
return error_msg, None | |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" | |
print(f"Code link for submission: {agent_code}") | |
# 2. Fetch Questions | |
print(f"Fetching questions from: {questions_url}") | |
try: | |
response = requests.get(questions_url, timeout=20) | |
response.raise_for_status() | |
questions_data = response.json() | |
if not questions_data: | |
print("Fetched questions list is empty.") | |
return "Fetched questions list is empty or invalid format.", None | |
print(f"Fetched {len(questions_data)} questions.") | |
except requests.exceptions.RequestException as e: | |
error_msg = f"Error fetching questions: {e}" | |
print(error_msg) | |
return error_msg, None | |
except requests.exceptions.JSONDecodeError as e: | |
error_msg = f"Error decoding server response for questions: {e}" | |
print(error_msg) | |
print(f"Response text: {response.text[:500]}") | |
return error_msg, None | |
# 3. Run your Agent | |
results_log = [] | |
answers_payload = [] | |
print(f"Running agent on {len(questions_data)} questions...") | |
for item in questions_data: | |
task_id = item.get("task_id") | |
question_text = item.get("question") | |
if not task_id or question_text is None: | |
print(f"Skipping item with missing task_id or question: {item}") | |
continue | |
try: | |
submitted_answer = agent(question_text) | |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) | |
except Exception as e: | |
print(f"Error running agent on task {task_id}: {e}") | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) | |
if not answers_payload: | |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) | |
# 4. Prepare Submission | |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} | |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." | |
print(status_update) | |
# 5. Submit | |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") | |
try: | |
response = requests.post(submit_url, json=submission_data, timeout=60) | |
response.raise_for_status() | |
result_data = response.json() | |
final_status = ( | |
f"Submission Successful!\n" | |
f"User: {result_data.get('username')}\n" | |
f"Overall Score: {result_data.get('score', 'N/A')}% " | |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" | |
f"Message: {result_data.get('message', 'No message received.')}" | |
) | |
print("Submission successful.") | |
results_df = pd.DataFrame(results_log) | |
return final_status, results_df | |
except requests.exceptions.HTTPError as e: | |
error_detail = f"Server responded with status {e.response.status_code}." | |
try: | |
error_json = e.response.json() | |
error_detail += f" Detail: {error_json.get('detail', e.response.text)}" | |
except requests.exceptions.JSONDecodeError: | |
error_detail += f" Response: {e.response.text[:500]}" | |
status_message = f"Submission Failed: {error_detail}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except requests.exceptions.RequestException as e: | |
status_message = f"Submission Failed: Network error - {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
# --- Build Gradio Interface using Blocks (No changes needed here) --- | |
with gr.Blocks() as demo: | |
gr.Markdown("# Gemini Agent Evaluation Runner") | |
gr.Markdown( | |
""" | |
**Instructions:** | |
1. This Space is configured to run a Gemini-1.5-Pro based agent. | |
2. Log in to your Hugging Face account using the button below. Submission is restricted to the Space owner. | |
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run the agent, submit answers, and see the score. | |
--- | |
**Note:** The process can take several minutes as the agent answers each question individually. | |
""" | |
) | |
# The `gr.LoginButton()` passes the OAuthProfile to any function that accepts it as an argument | |
gr.LoginButton() | |
run_button = gr.Button("Run Evaluation & Submit All Answers") | |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) | |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) | |
run_button.click( | |
fn=run_and_submit_all, | |
# The profile object from the LoginButton is automatically passed to the first argument of the function | |
outputs=[status_output, results_table] | |
) | |
if __name__ == "__main__": | |
print("\n" + "-"*30 + " App Starting " + "-"*30) | |
demo.launch(debug=True, share=False) |