benjipeng's picture
Update app.py
fd09c06 verified
raw
history blame
7.03 kB
import os
import gradio as gr
import requests
import pandas as pd
# Import your upgraded agent
from agent import GeminiAgent
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# This is the security gate. Only this user can run submissions.
MY_HF_USERNAME = "benjipeng"
def run_and_submit_all(profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the GeminiAgent on them, submits all answers,
and displays the results. This function is restricted to a specific user and
provides file context to the agent.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID")
# --- User Authentication and Authorization ---
if not profile:
return "Please Login to Hugging Face with the button to run the evaluation.", None
username = profile.username
print(f"User logged in: {username}")
if username != MY_HF_USERNAME:
print(f"Access denied for user: {username}. Allowed user is {MY_HF_USERNAME}.")
return f"Error: This Space is configured for a specific user. Access denied for '{username}'.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent
print("Instantiating agent...")
try:
agent = GeminiAgent()
except Exception as e:
error_msg = f"Error initializing agent: {e}"
print(error_msg)
return error_msg, None
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(f"Code link for submission: {agent_code}")
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=20)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
error_msg = f"Error fetching questions: {e}"
print(error_msg)
return error_msg, None
except requests.exceptions.JSONDecodeError as e:
error_msg = f"Error decoding server response for questions: {e}"
print(error_msg)
print(f"Response text: {response.text[:500]}")
return error_msg, None
# 3. Run your Agent (with context injection)
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
# This is the key improvement: check if a file is associated with the question
has_file = item.get("file", None) is not None
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
# Modify the question to give the agent context about the file's existence
if has_file:
modified_question = f"{question_text}\n\n[Agent Note: A file is attached to this question. Use the 'read_file_from_api' tool to access it if needed.]"
else:
modified_question = question_text
try:
# Pass BOTH the modified question and the task_id to the agent
submitted_answer = agent(modified_question, task_id)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=120) # Increased timeout
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Gemini ReAct Agent for GAIA")
gr.Markdown(
"""
**Instructions:**
1. Log in using the Hugging Face login button below.
2. Click 'Run Evaluation & Submit' to start the process.
3. The agent will fetch all 20 questions, reason about them step-by-step, use tools (like web search and a file reader), and submit the final answers for scoring.
**Note:** This process can take several minutes. Please be patient.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
demo.launch(debug=True, share=False)