gcli2api / src /openai_routes.py
bibibi12345's picture
added better logging
c3b0824
raw
history blame
9.13 kB
"""
OpenAI API Routes - Handles OpenAI-compatible endpoints.
This module provides OpenAI-compatible endpoints that transform requests/responses
and delegate to the Google API client.
"""
import json
import uuid
import asyncio
import logging
from fastapi import APIRouter, Request, Response, Depends
from fastapi.responses import StreamingResponse
from .auth import authenticate_user
from .models import OpenAIChatCompletionRequest
from .openai_transformers import (
openai_request_to_gemini,
gemini_response_to_openai,
gemini_stream_chunk_to_openai
)
from .google_api_client import send_gemini_request, build_gemini_payload_from_openai
router = APIRouter()
@router.post("/v1/chat/completions")
async def openai_chat_completions(
request: OpenAIChatCompletionRequest,
http_request: Request,
username: str = Depends(authenticate_user)
):
"""
OpenAI-compatible chat completions endpoint.
Transforms OpenAI requests to Gemini format, sends to Google API,
and transforms responses back to OpenAI format.
"""
try:
logging.info(f"OpenAI chat completion request: model={request.model}, stream={request.stream}")
# Transform OpenAI request to Gemini format
gemini_request_data = openai_request_to_gemini(request)
# Build the payload for Google API
gemini_payload = build_gemini_payload_from_openai(gemini_request_data)
except Exception as e:
logging.error(f"Error processing OpenAI request: {str(e)}")
return Response(
content=json.dumps({
"error": {
"message": f"Request processing failed: {str(e)}",
"type": "invalid_request_error"
}
}),
status_code=400,
media_type="application/json"
)
if request.stream:
# Handle streaming response
async def openai_stream_generator():
try:
response = send_gemini_request(gemini_payload, is_streaming=True)
if isinstance(response, StreamingResponse):
response_id = "chatcmpl-" + str(uuid.uuid4())
logging.info(f"Starting streaming response: {response_id}")
async for chunk in response.body_iterator:
if isinstance(chunk, bytes):
chunk = chunk.decode('utf-8')
if chunk.startswith('data: '):
try:
# Parse the Gemini streaming chunk
chunk_data = chunk[6:] # Remove 'data: ' prefix
gemini_chunk = json.loads(chunk_data)
# Transform to OpenAI format
openai_chunk = gemini_stream_chunk_to_openai(
gemini_chunk,
request.model,
response_id
)
# Send as OpenAI streaming format
yield f"data: {json.dumps(openai_chunk)}\n\n"
await asyncio.sleep(0)
except (json.JSONDecodeError, KeyError, UnicodeDecodeError) as e:
logging.warning(f"Failed to parse streaming chunk: {str(e)}")
continue
# Send the final [DONE] marker
yield "data: [DONE]\n\n"
logging.info(f"Completed streaming response: {response_id}")
else:
# Error case - log and forward the error response
error_msg = "Streaming request failed"
if hasattr(response, 'status_code'):
error_msg += f" (status: {response.status_code})"
if hasattr(response, 'body'):
error_msg += f" (body: {response.body})"
logging.error(error_msg)
error_data = {
"error": {
"message": error_msg,
"type": "api_error"
}
}
yield f"data: {json.dumps(error_data)}\n\n"
yield "data: [DONE]\n\n"
except Exception as e:
logging.error(f"Streaming error: {str(e)}")
error_data = {
"error": {
"message": f"Streaming failed: {str(e)}",
"type": "api_error"
}
}
yield f"data: {json.dumps(error_data)}\n\n"
yield "data: [DONE]\n\n"
return StreamingResponse(
openai_stream_generator(),
media_type="text/event-stream"
)
else:
# Handle non-streaming response
try:
response = send_gemini_request(gemini_payload, is_streaming=False)
if isinstance(response, Response) and response.status_code != 200:
# Log and forward error responses
logging.error(f"Gemini API error: status={response.status_code}, body={response.body}")
return response
try:
# Parse Gemini response and transform to OpenAI format
gemini_response = json.loads(response.body)
openai_response = gemini_response_to_openai(gemini_response, request.model)
logging.info(f"Successfully processed non-streaming response for model: {request.model}")
return openai_response
except (json.JSONDecodeError, AttributeError) as e:
logging.error(f"Failed to parse Gemini response: {str(e)}")
return Response(
content=json.dumps({
"error": {
"message": f"Failed to process response: {str(e)}",
"type": "api_error"
}
}),
status_code=500,
media_type="application/json"
)
except Exception as e:
logging.error(f"Non-streaming request failed: {str(e)}")
return Response(
content=json.dumps({
"error": {
"message": f"Request failed: {str(e)}",
"type": "api_error"
}
}),
status_code=500,
media_type="application/json"
)
@router.get("/v1/models")
async def openai_list_models(username: str = Depends(authenticate_user)):
"""
OpenAI-compatible models endpoint.
Returns available models in OpenAI format.
"""
try:
logging.info("OpenAI models list requested")
# Convert our Gemini models to OpenAI format
from .config import SUPPORTED_MODELS
openai_models = []
for model in SUPPORTED_MODELS:
# Remove "models/" prefix for OpenAI compatibility
model_id = model["name"].replace("models/", "")
openai_models.append({
"id": model_id,
"object": "model",
"created": 1677610602, # Static timestamp
"owned_by": "google",
"permission": [
{
"id": "modelperm-" + model_id.replace("/", "-"),
"object": "model_permission",
"created": 1677610602,
"allow_create_engine": False,
"allow_sampling": True,
"allow_logprobs": False,
"allow_search_indices": False,
"allow_view": True,
"allow_fine_tuning": False,
"organization": "*",
"group": None,
"is_blocking": False
}
],
"root": model_id,
"parent": None
})
logging.info(f"Returning {len(openai_models)} models")
return {
"object": "list",
"data": openai_models
}
except Exception as e:
logging.error(f"Failed to list models: {str(e)}")
return Response(
content=json.dumps({
"error": {
"message": f"Failed to list models: {str(e)}",
"type": "api_error"
}
}),
status_code=500,
media_type="application/json"
)