Spaces:
Running
Running
File size: 2,118 Bytes
ebf7fba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
import streamlit as st
import torch
import tempfile
import os
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
from audiorecorder import audiorecorder
from pydub import AudioSegment
# Setup model
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model_id = "KBLab/kb-whisper-tiny"
@st.cache_resource
def load_model():
model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_id, torch_dtype=torch_dtype, use_safetensors=True, cache_dir="cache"
)
model.to(device)
processor = AutoProcessor.from_pretrained(model_id)
return pipeline(
"automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
torch_dtype=torch_dtype,
device=device,
)
pipe = load_model()
def transcribe_audio(audio_path):
return pipe(audio_path, chunk_length_s=30, generate_kwargs={"task": "transcribe", "language": "sv"})
st.title("Speech-to-Text Transcription")
# Audio recording
st.subheader("Record Audio")
recorded_audio = audiorecorder("Start Recording", "Stop Recording")
if recorded_audio:
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_file:
temp_file.write(recorded_audio.tobytes())
temp_file_path = temp_file.name
st.audio(temp_file_path, format="audio/wav")
result = transcribe_audio(temp_file_path)
st.write("### Transcription:")
st.write(result["text"])
os.remove(temp_file_path)
# File upload
st.subheader("Upload Audio File")
uploaded_file = st.file_uploader("Choose an audio file", type=["wav", "mp3", "ogg", "flac"])
if uploaded_file:
with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(uploaded_file.name)[-1]) as temp_file:
temp_file.write(uploaded_file.read())
temp_file_path = temp_file.name
st.audio(temp_file_path)
result = transcribe_audio(temp_file_path)
st.write("### Transcription:")
st.write(result["text"])
os.remove(temp_file_path)
|