File size: 8,202 Bytes
6e871ac 9bc4638 6e871ac 9bc4638 6e871ac 9bc4638 6e871ac 9bc4638 6e871ac 9bc4638 6e871ac 9bc4638 6e871ac 9bc4638 6e871ac 6e60611 6e871ac b950bc5 6e871ac b950bc5 5bc3a57 6e871ac 9bc4638 6e871ac 9bc4638 0b34400 9bc4638 6e871ac e508568 6e871ac e508568 6e871ac 9bc4638 6e871ac 0b34400 6e871ac 0b34400 6e871ac 9bc4638 6e871ac 0b34400 6e871ac 9bc4638 6e871ac 0b34400 6e871ac b950bc5 6e871ac 9bc4638 b950bc5 6e871ac b950bc5 6e871ac 9bc4638 6e871ac 9bc4638 6e871ac 9bc4638 6e871ac 9bc4638 6e871ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
# The full rewritten version of the provided code with progress bar, error fixes, and proper Gradio integration
import os
import copy
import tempfile
from datetime import datetime
import gc
import cv2
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
import torch
import gradio as gr
from moviepy.editor import ImageSequenceClip
from sam2.build_sam import build_sam2_video_predictor
# Remove CUDA-related env var to force CPU-only mode
os.environ.pop("TORCH_CUDNN_SDPA_ENABLED", None)
# Config
sam2_checkpoint = "checkpoints/edgetam.pt"
model_cfg = "edgetam.yaml"
examples = [[f"examples/{vid}"] for vid in ["01_dog.mp4", "02_cups.mp4", "03_blocks.mp4", "04_coffee.mp4", "05_default_juggle.mp4"]]
OBJ_ID = 0
# Model loader
if os.path.exists(sam2_checkpoint) and os.path.exists(model_cfg):
try:
predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint, device="cpu")
except Exception as e:
print("Error loading predictor:", e)
predictor = None
else:
print("Model files missing.")
predictor = None
def get_fps(video_path):
cap = cv2.VideoCapture(video_path)
if not cap.isOpened(): return 30.0
fps = cap.get(cv2.CAP_PROP_FPS)
cap.release()
return fps
def reset(session):
if session["inference_state"]:
predictor.reset_state(session["inference_state"])
session.update({"input_points": [], "input_labels": [], "first_frame": None, "all_frames": None, "inference_state": None})
return None, gr.update(open=True), None, None, gr.update(value=None, visible=False), session
def clear_points(session):
session["input_points"] = []
session["input_labels"] = []
if session["inference_state"] and session["inference_state"].get("tracking_has_started"):
predictor.reset_state(session["inference_state"])
return session["first_frame"], None, gr.update(value=None, visible=False), session
def preprocess_video(video_path, session):
cap = cv2.VideoCapture(video_path)
if not cap.isOpened(): return gr.update(open=True), None, None, gr.update(value=None, visible=False), session
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
stride = max(1, total_frames // 300)
frames, first_frame = [], None
w, h = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)), int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
target_w = 640
scale = target_w / w if w > target_w else 1.0
frame_id = 0
while True:
ret, frame = cap.read()
if not ret: break
if frame_id % stride == 0:
if scale < 1.0:
frame = cv2.resize(frame, (int(w*scale), int(h*scale)))
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
if first_frame is None: first_frame = frame
frames.append(frame)
frame_id += 1
cap.release()
session.update({"first_frame": first_frame, "all_frames": frames, "frame_stride": stride, "scale_factor": scale, "inference_state": predictor.init_state(video_path=video_path), "input_points": [], "input_labels": []})
return gr.update(open=False), first_frame, None, gr.update(value=None, visible=False), session
def show_mask(mask, obj_id=None):
cmap = plt.get_cmap("tab10")
color = np.array([*cmap(0 if obj_id is None else obj_id)[:3], 0.6])
h, w = mask.shape
mask_rgba = (mask.reshape(h, w, 1) * color.reshape(1, 1, -1) * 255).astype(np.uint8)
proper_mask = np.zeros((h, w, 4), dtype=np.uint8)
proper_mask[:, :, :min(mask_rgba.shape[2], 4)] = mask_rgba[:, :, :min(mask_rgba.shape[2], 4)]
return Image.fromarray(proper_mask, "RGBA")
def segment_with_points(ptype, session, evt):
session["input_points"].append(evt.index)
session["input_labels"].append(1 if ptype == "include" else 0)
first = session["first_frame"]
h, w = first.shape[:2]
layer = np.zeros((h, w, 4), dtype=np.uint8)
for idx, pt in enumerate(session["input_points"]):
color = (0, 255, 0, 255) if session["input_labels"][idx] == 1 else (255, 0, 0, 255)
cv2.circle(layer, pt, int(min(w, h)*0.01), color, -1)
overlay = Image.alpha_composite(Image.fromarray(first).convert("RGBA"), Image.fromarray(layer, "RGBA"))
try:
_, _, logits = predictor.add_new_points(session["inference_state"], 0, OBJ_ID, np.array(session["input_points"]), np.array(session["input_labels"]))
mask = (logits[0] > 0.0).cpu().numpy()
mask = cv2.resize(mask.astype(np.uint8), (w, h), interpolation=cv2.INTER_NEAREST).astype(bool)
mask_img = show_mask(mask)
return overlay, Image.alpha_composite(Image.fromarray(first).convert("RGBA"), mask_img), session
except Exception as e:
print("Segmentation error:", e)
return overlay, overlay, session
def propagate(video_in, session, progress=gr.Progress()):
if not session["input_points"] or not session["inference_state"]: return None, session
masks = {}
for i, (idxs, obj_ids, logits) in enumerate(predictor.propagate_in_video(session["inference_state"])):
try:
masks[idxs] = {oid: (logits[j] > 0.0).cpu().numpy() for j, oid in enumerate(obj_ids)}
progress(i / 300, desc=f"Tracking frame {idxs}")
except: continue
frames_out, stride = [], max(1, len(masks) // 50)
for i in range(0, len(masks), stride):
if i not in masks or OBJ_ID not in masks[i]: continue
try:
frame = session["all_frames"][i]
mask = masks[i][OBJ_ID]
h, w = frame.shape[:2]
mask = cv2.resize(mask.astype(np.uint8), (w, h), interpolation=cv2.INTER_NEAREST).astype(bool)
output = Image.alpha_composite(Image.fromarray(frame).convert("RGBA"), show_mask(mask))
frames_out.append(np.array(output))
except: continue
out_path = os.path.join(tempfile.gettempdir(), f"output_video_{datetime.now().strftime('%Y%m%d%H%M%S')}.mp4")
fps = min(15, get_fps(video_in))
ImageSequenceClip(frames_out, fps=fps).write_videofile(out_path, codec="libx264", bitrate="800k", threads=2, logger=None)
gc.collect()
return gr.update(value=out_path, visible=True), session
with gr.Blocks() as demo:
state = gr.State({"first_frame": None, "all_frames": None, "input_points": [], "input_labels": [], "inference_state": None, "frame_stride": 1, "scale_factor": 1.0, "original_dimensions": None})
gr.Markdown("<center><strong><font size='8'>EdgeTAM CPU</font></strong> <a href='https://github.com/facebookresearch/EdgeTAM'><font size='6'>[GitHub]</font></a></center>")
with gr.Row():
with gr.Column():
gr.Markdown("""<ol><li>Upload a video or use an example</li><li>Select 'include' or 'exclude' and click points</li><li>Click 'Track' to segment and track</li></ol>""")
drawer = gr.Accordion("Input Video", open=True)
with drawer:
video_in = gr.Video(label="Input Video", format="mp4")
ptype = gr.Radio(label="Point Type", choices=["include", "exclude"], value="include")
track_btn = gr.Button("Track", variant="primary")
clear_btn = gr.Button("Clear Points")
reset_btn = gr.Button("Reset")
points_map = gr.Image(label="Frame with Points", type="numpy", interactive=False)
with gr.Column():
gr.Markdown("# Try some examples ⬇️")
gr.Examples(examples, inputs=[video_in], examples_per_page=5)
output_img = gr.Image(label="Reference Mask")
output_vid = gr.Video(visible=False)
video_in.upload(preprocess_video, [video_in, state], [drawer, points_map, output_img, output_vid, state])
video_in.change(preprocess_video, [video_in, state], [drawer, points_map, output_img, output_vid, state])
points_map.select(segment_with_points, [ptype, state], [points_map, output_img, state])
clear_btn.click(clear_points, state, [points_map, output_img, output_vid, state])
reset_btn.click(reset, state, [video_in, drawer, points_map, output_img, output_vid, state])
track_btn.click(fn=propagate, inputs=[video_in, state], outputs=[output_vid, state])
if __name__ == '__main__':
demo.queue()
demo.launch() |