julien.blanchon
add app
c8c12e9
raw
history blame
3.74 kB
"""Callbacks for NNCF optimization."""
# Copyright (C) 2022 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions
# and limitations under the License.
import os
from typing import Any, Dict, Optional
import pytorch_lightning as pl
from nncf import NNCFConfig
from nncf.api.compression import CompressionAlgorithmController
from nncf.torch import register_default_init_args
from pytorch_lightning import Callback
from anomalib.utils.callbacks.nncf.utils import InitLoader, wrap_nncf_model
class NNCFCallback(Callback):
"""Callback for NNCF compression.
Assumes that the pl module contains a 'model' attribute, which is
the PyTorch module that must be compressed.
Args:
config (Dict): NNCF Configuration
export_dir (Str): Path where the export `onnx` and the OpenVINO `xml` and `bin` IR are saved.
If None model will not be exported.
"""
def __init__(self, nncf_config: Dict, export_dir: str = None):
self.export_dir = export_dir
self.nncf_config = NNCFConfig(nncf_config)
self.nncf_ctrl: Optional[CompressionAlgorithmController] = None
# pylint: disable=unused-argument
def setup(self, trainer: pl.Trainer, pl_module: pl.LightningModule, stage: Optional[str] = None) -> None:
"""Call when fit or test begins.
Takes the pytorch model and wraps it using the compression controller
so that it is ready for nncf fine-tuning.
"""
if self.nncf_ctrl is not None:
return
init_loader = InitLoader(trainer.datamodule.train_dataloader()) # type: ignore
nncf_config = register_default_init_args(self.nncf_config, init_loader)
self.nncf_ctrl, pl_module.model = wrap_nncf_model(
model=pl_module.model, config=nncf_config, dataloader=trainer.datamodule.train_dataloader() # type: ignore
)
def on_train_batch_start(
self,
trainer: pl.Trainer,
_pl_module: pl.LightningModule,
_batch: Any,
_batch_idx: int,
_unused: Optional[int] = 0,
) -> None:
"""Call when the train batch begins.
Prepare compression method to continue training the model in the next step.
"""
if self.nncf_ctrl:
self.nncf_ctrl.scheduler.step()
def on_train_epoch_start(self, _trainer: pl.Trainer, _pl_module: pl.LightningModule) -> None:
"""Call when the train epoch starts.
Prepare compression method to continue training the model in the next epoch.
"""
if self.nncf_ctrl:
self.nncf_ctrl.scheduler.epoch_step()
def on_train_end(self, _trainer: pl.Trainer, _pl_module: pl.LightningModule) -> None:
"""Call when the train ends.
Exports onnx model and if compression controller is not None, uses the onnx model to generate the OpenVINO IR.
"""
if self.export_dir is None or self.nncf_ctrl is None:
return
os.makedirs(self.export_dir, exist_ok=True)
onnx_path = os.path.join(self.export_dir, "model_nncf.onnx")
self.nncf_ctrl.export_model(onnx_path)
optimize_command = "mo --input_model " + onnx_path + " --output_dir " + self.export_dir
os.system(optimize_command)