Spaces:
Build error
Build error
"""Callbacks for NNCF optimization.""" | |
# Copyright (C) 2022 Intel Corporation | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, | |
# software distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions | |
# and limitations under the License. | |
import os | |
from typing import Any, Dict, Optional | |
import pytorch_lightning as pl | |
from nncf import NNCFConfig | |
from nncf.api.compression import CompressionAlgorithmController | |
from nncf.torch import register_default_init_args | |
from pytorch_lightning import Callback | |
from anomalib.utils.callbacks.nncf.utils import InitLoader, wrap_nncf_model | |
class NNCFCallback(Callback): | |
"""Callback for NNCF compression. | |
Assumes that the pl module contains a 'model' attribute, which is | |
the PyTorch module that must be compressed. | |
Args: | |
config (Dict): NNCF Configuration | |
export_dir (Str): Path where the export `onnx` and the OpenVINO `xml` and `bin` IR are saved. | |
If None model will not be exported. | |
""" | |
def __init__(self, nncf_config: Dict, export_dir: str = None): | |
self.export_dir = export_dir | |
self.nncf_config = NNCFConfig(nncf_config) | |
self.nncf_ctrl: Optional[CompressionAlgorithmController] = None | |
# pylint: disable=unused-argument | |
def setup(self, trainer: pl.Trainer, pl_module: pl.LightningModule, stage: Optional[str] = None) -> None: | |
"""Call when fit or test begins. | |
Takes the pytorch model and wraps it using the compression controller | |
so that it is ready for nncf fine-tuning. | |
""" | |
if self.nncf_ctrl is not None: | |
return | |
init_loader = InitLoader(trainer.datamodule.train_dataloader()) # type: ignore | |
nncf_config = register_default_init_args(self.nncf_config, init_loader) | |
self.nncf_ctrl, pl_module.model = wrap_nncf_model( | |
model=pl_module.model, config=nncf_config, dataloader=trainer.datamodule.train_dataloader() # type: ignore | |
) | |
def on_train_batch_start( | |
self, | |
trainer: pl.Trainer, | |
_pl_module: pl.LightningModule, | |
_batch: Any, | |
_batch_idx: int, | |
_unused: Optional[int] = 0, | |
) -> None: | |
"""Call when the train batch begins. | |
Prepare compression method to continue training the model in the next step. | |
""" | |
if self.nncf_ctrl: | |
self.nncf_ctrl.scheduler.step() | |
def on_train_epoch_start(self, _trainer: pl.Trainer, _pl_module: pl.LightningModule) -> None: | |
"""Call when the train epoch starts. | |
Prepare compression method to continue training the model in the next epoch. | |
""" | |
if self.nncf_ctrl: | |
self.nncf_ctrl.scheduler.epoch_step() | |
def on_train_end(self, _trainer: pl.Trainer, _pl_module: pl.LightningModule) -> None: | |
"""Call when the train ends. | |
Exports onnx model and if compression controller is not None, uses the onnx model to generate the OpenVINO IR. | |
""" | |
if self.export_dir is None or self.nncf_ctrl is None: | |
return | |
os.makedirs(self.export_dir, exist_ok=True) | |
onnx_path = os.path.join(self.export_dir, "model_nncf.onnx") | |
self.nncf_ctrl.export_model(onnx_path) | |
optimize_command = "mo --input_model " + onnx_path + " --output_dir " + self.export_dir | |
os.system(optimize_command) | |