Spaces:
Build error
A newer version of the Gradio SDK is available:
5.42.0
Deep Feature Kernel Density Estimation
Model Type: Classification
Description
Fast anomaly classification algorithm that consists of a deep feature extraction stage followed by anomaly classification stage consisting of PCA and Gaussian Kernel Density Estimation.
Feature Extraction
Features are extracted by feeding the images through a ResNet50 backbone, which was pre-trained on ImageNet. The output of the penultimate layer (average pooling layer) of the network is used to obtain a semantic feature vector with a fixed length of 2048.
Anomaly Detection
In the anomaly classification stage, the features are first reduced to the first 16 principal components. Gaussian Kernel Density is then used to obtain an estimate of the probability density of new examples, based on the collection of training features obtained during the training phase.
Usage
python tools/train.py --model dfkde
Benchmark
All results gathered with seed 42
.
MVTec AD Dataset
Image-Level AUC
Avg | Carpet | Grid | Leather | Tile | Wood | Bottle | Cable | Capsule | Hazelnut | Metal Nut | Pill | Screw | Toothbrush | Transistor | Zipper | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ResNet-18 | 0.762 | 0.646 | 0.577 | 0.669 | 0.965 | 0.863 | 0.951 | 0.751 | 0.698 | 0.806 | 0.729 | 0.607 | 0.694 | 0.767 | 0.839 | 0.866 |
Wide ResNet-50 | 0.774 | 0.708 | 0.422 | 0.905 | 0.959 | 0.903 | 0.936 | 0.746 | 0.853 | 0.736 | 0.687 | 0.749 | 0.574 | 0.697 | 0.843 | 0.892 |
Image F1 Score
Avg | Carpet | Grid | Leather | Tile | Wood | Bottle | Cable | Capsule | Hazelnut | Metal Nut | Pill | Screw | Toothbrush | Transistor | Zipper | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ResNet-18 | 0.872 | 0.864 | 0.844 | 0.854 | 0.960 | 0.898 | 0.942 | 0.793 | 0.908 | 0.827 | 0.894 | 0.916 | 0.859 | 0.853 | 0.756 | 0.916 |
Wide ResNet-50 | 0.875 | 0.907 | 0.844 | 0.905 | 0.945 | 0.914 | 0.946 | 0.790 | 0.914 | 0.817 | 0.894 | 0.922 | 0.855 | 0.845 | 0.722 | 0.910 |