julien.blanchon
add app
c8c12e9
"""Post Process This module contains utils function to apply post-processing to the output predictions."""
# Copyright (C) 2020 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions
# and limitations under the License.
import cv2
import numpy as np
from skimage import morphology
def anomaly_map_to_color_map(anomaly_map: np.ndarray, normalize: bool = True) -> np.ndarray:
"""Compute anomaly color heatmap.
Args:
anomaly_map (np.ndarray): Final anomaly map computed by the distance metric.
normalize (bool, optional): Bool to normalize the anomaly map prior to applying
the color map. Defaults to True.
Returns:
np.ndarray: [description]
"""
if normalize:
anomaly_map = (anomaly_map - anomaly_map.min()) / np.ptp(anomaly_map)
anomaly_map = anomaly_map * 255
anomaly_map = anomaly_map.astype(np.uint8)
anomaly_map = cv2.applyColorMap(anomaly_map, cv2.COLORMAP_JET)
anomaly_map = cv2.cvtColor(anomaly_map, cv2.COLOR_BGR2RGB)
return anomaly_map
def superimpose_anomaly_map(
anomaly_map: np.ndarray, image: np.ndarray, alpha: float = 0.4, gamma: int = 0, normalize: bool = False
) -> np.ndarray:
"""Superimpose anomaly map on top of in the input image.
Args:
anomaly_map (np.ndarray): Anomaly map
image (np.ndarray): Input image
alpha (float, optional): Weight to overlay anomaly map
on the input image. Defaults to 0.4.
gamma (int, optional): Value to add to the blended image
to smooth the processing. Defaults to 0. Overall,
the formula to compute the blended image is
I' = (alpha*I1 + (1-alpha)*I2) + gamma
normalize: whether or not the anomaly maps should
be normalized to image min-max
Returns:
np.ndarray: Image with anomaly map superimposed on top of it.
"""
anomaly_map = anomaly_map_to_color_map(anomaly_map.squeeze(), normalize=normalize)
superimposed_map = cv2.addWeighted(anomaly_map, alpha, image, (1 - alpha), gamma)
return superimposed_map
def compute_mask(anomaly_map: np.ndarray, threshold: float, kernel_size: int = 4) -> np.ndarray:
"""Compute anomaly mask via thresholding the predicted anomaly map.
Args:
anomaly_map (np.ndarray): Anomaly map predicted via the model
threshold (float): Value to threshold anomaly scores into 0-1 range.
kernel_size (int): Value to apply morphological operations to the predicted mask. Defaults to 4.
Returns:
Predicted anomaly mask
"""
anomaly_map = anomaly_map.squeeze()
mask: np.ndarray = np.zeros_like(anomaly_map).astype(np.uint8)
mask[anomaly_map > threshold] = 1
kernel = morphology.disk(kernel_size)
mask = morphology.opening(mask, kernel)
mask *= 255
return mask