Spaces:
Build error
Build error
"""Module that tracks the min and max values of the observations in each batch.""" | |
# Copyright (C) 2020 Intel Corporation | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, | |
# software distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions | |
# and limitations under the License. | |
from typing import Tuple | |
import torch | |
from torch import Tensor | |
from torchmetrics import Metric | |
class MinMax(Metric): | |
"""Track the min and max values of the observations in each batch.""" | |
def __init__(self, **kwargs): | |
super().__init__(**kwargs) | |
self.add_state("min", torch.tensor(float("inf")), persistent=True) # pylint: disable=not-callable | |
self.add_state("max", torch.tensor(float("-inf")), persistent=True) # pylint: disable=not-callable | |
self.min = torch.tensor(float("inf")) # pylint: disable=not-callable | |
self.max = torch.tensor(float("-inf")) # pylint: disable=not-callable | |
# pylint: disable=arguments-differ | |
def update(self, predictions: Tensor) -> None: # type: ignore | |
"""Update the min and max values.""" | |
self.max = torch.max(self.max, torch.max(predictions)) | |
self.min = torch.min(self.min, torch.min(predictions)) | |
def compute(self) -> Tuple[Tensor, Tensor]: | |
"""Return min and max values.""" | |
return self.min, self.max | |