|
import streamlit as st |
|
from google.cloud import language_v1 |
|
import os |
|
|
|
|
|
def sample_analyze_entities(text_content): |
|
st.write("Debug: Entered sample_analyze_entities") |
|
try: |
|
client = language_v1.LanguageServiceClient() |
|
|
|
type_ = language_v1.Document.Type.PLAIN_TEXT |
|
language = "en" |
|
document = {"content": text_content, "type_": type_, "language": language} |
|
encoding_type = language_v1.EncodingType.UTF8 |
|
|
|
st.write("Debug: Making API call...") |
|
|
|
response = client.analyze_entities(request={"document": document, "encoding_type": encoding_type}) |
|
|
|
st.write("Debug: API call completed.") |
|
|
|
for entity in response.entities: |
|
st.write(f"Entity: {entity.name}, Type: {language_v1.Entity.Type(entity.type_).name}, Salience: {entity.salience}") |
|
except Exception as e: |
|
st.write(f"Debug: An error occurred: {e}") |
|
|
|
|
|
st.title('Google Cloud NLP Entity Analyzer') |
|
user_input = st.text_area('Enter text to analyze', '') |
|
|
|
if st.button('Analyze'): |
|
st.write("Debug: Analyze button clicked") |
|
if user_input: |
|
st.write(f"Debug: User input received: {user_input}") |
|
sample_analyze_entities(user_input) |
|
|