File size: 14,619 Bytes
4b4abb7
 
 
 
 
 
 
ba3b7a5
4b4abb7
4310abc
ba3b7a5
 
4310abc
ba3b7a5
 
 
 
c164275
ba3b7a5
 
e02e83a
c164275
 
4310abc
ba3b7a5
e02e83a
c164275
ba3b7a5
4310abc
c164275
 
 
 
 
 
ba3b7a5
4310abc
 
 
 
 
 
e02e83a
ba3b7a5
c164275
 
 
ba3b7a5
dcec766
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba3b7a5
c164275
 
 
 
 
 
 
 
 
4310abc
 
 
 
 
 
e02e83a
 
c164275
e02e83a
c164275
ba3b7a5
c164275
ba3b7a5
 
 
 
 
 
 
 
 
c164275
ba3b7a5
c164275
 
ba3b7a5
e02e83a
ba3b7a5
 
4310abc
 
 
 
 
 
 
 
 
 
 
4b4abb7
4310abc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b4abb7
4310abc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e02e83a
 
 
 
 
 
 
649323e
e02e83a
4310abc
649323e
 
4310abc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
649323e
 
4310abc
 
 
649323e
4310abc
 
ba3b7a5
4310abc
 
649323e
4310abc
 
 
4b4abb7
4310abc
 
4b4abb7
4310abc
 
4b4abb7
 
4310abc
 
 
 
 
 
 
 
 
 
 
4b4abb7
4310abc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba3b7a5
e02e83a
ba3b7a5
 
 
 
 
 
 
c164275
ba3b7a5
e02e83a
ba3b7a5
 
 
 
c164275
 
 
ba3b7a5
e02e83a
c164275
 
 
 
 
 
 
 
ba3b7a5
 
 
 
c164275
e02e83a
ba3b7a5
 
c164275
 
 
e02e83a
c164275
ba3b7a5
 
4310abc
ba3b7a5
 
 
4310abc
ba3b7a5
 
 
4310abc
ba3b7a5
 
 
4310abc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b4abb7
 
4310abc
 
4b4abb7
4310abc
 
 
ba3b7a5
 
c164275
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
# ── Streamlit must write to /tmp on Spaces ──────────────────────────────────────
import os as _os
_os.environ["STREAMLIT_CONFIG_DIR"] = "/tmp"
_os.environ["STREAMLIT_CACHE_DIR"] = "/tmp"
_os.environ["STREAMLIT_CACHE_STORAGE"] = "filesystem"

# ── Imports ────────────────────────────────────────────────────────────────────
import os
import io
import json
import streamlit as st
import pandas as pd
from collections import Counter
from pypdf import PdfReader
from pyvis.network import Network

from knowledge_graph_maker import (
    GraphMaker, Ontology, Document, OpenAIClient
)

# ── Page setup ──────────────────────────────────────────────────────────────────
st.set_page_config(page_title="Knowledge Graph (OpenRouter)", layout="wide")
st.title("Knowledge Graph from Text/PDF β€” OpenRouter")
st.caption("Builds a knowledge graph with knowledge-graph-maker via OpenRouter. Pick a model, choose presets, and render via PyVis or Cytoscape.js.")

# ── Secrets / env ───────────────────────────────────────────────────────────────
OPENROUTER_API_KEY = os.getenv("OPENROUTER_API_KEY", "")

# Preset OpenRouter models (extend as needed)
OPENROUTER_MODELS = [
    "openai/gpt-oss-20b:free",
    "moonshotai/kimi-k2:free",
    "google/gemini-2.0-flash-exp:free",
    "google/gemma-3-27b-it:free",
]

# ---- Preset defaults in session state ----
if "temperature" not in st.session_state:
    st.session_state.temperature = 0.1
if "top_p" not in st.session_state:
    st.session_state.top_p = 0.9

# ── Sidebar controls ───────────────────────────────────────────────────────────
with st.sidebar:
    st.subheader("Model & Generation Settings")
    model_choice = st.selectbox("OpenRouter model", OPENROUTER_MODELS, index=0)
    custom_model = st.text_input("Custom model id (optional)", placeholder="e.g. meta-llama/llama-3.1-8b-instruct")

    st.markdown("### Preset")
    PRESETS = {
        "Extractive (stable)": {"temperature": 0.1, "top_p": 0.9, "desc": "Most deterministic; best for IE"},
        "Balanced":            {"temperature": 0.2, "top_p": 0.9, "desc": "Slightly more recall"},
        "Exploratory":         {"temperature": 0.4, "top_p": 0.95, "desc": "More ideas; may add noise"},
    }
    preset_names = list(PRESETS.keys())
    preset = st.selectbox("Choose a preset", preset_names, index=0,
                          help=PRESETS[preset_names[0]]["desc"])
    if st.button("Apply preset"):
        st.session_state.temperature = PRESETS[preset]["temperature"]
        st.session_state.top_p = PRESETS[preset]["top_p"]
        st.toast(f"Applied: {preset}", icon="βœ…")

    temperature = st.slider(
        "Temperature", 0.0, 1.0, key="temperature", step=0.05,
        help="Lower = more deterministic; higher = more variety"
    )
    top_p = st.slider(
        "Top-p", 0.0, 1.0, key="top_p", step=0.05,
        help="Nucleus sampling threshold; 0.9 is a good default"
    )

    st.markdown("### Ontology (labels)")
    labels_text = st.text_area(
        "Comma-separated labels",
        value="Person, Object, Event, Place, Document, Organisation, Action, Miscellanous",
        height=70,
    )
    relationships_text = st.text_input(
        "Relationships (comma-separated)",
        value="Relation between any pair of Entities",
    )

    st.markdown("### Visualization")
    renderer = st.radio("Renderer", ["PyVis (interactive)", "Cytoscape.js (beta)"], index=0)
    label_mode = st.radio("Edge labels", ["Always visible", "Tooltip only"], index=0)
    show_legend = st.checkbox("Show color legend", value=True)

# ── Helpers ────────────────────────────────────────────────────────────────────
def parse_labels(text: str):
    return [lbl.strip() for lbl in text.split(",") if lbl.strip()] or [
        "Person", "Object", "Event", "Place", "Document", "Organisation", "Action", "Miscellanous"
    ]

def pdf_to_text(file) -> str:
    reader = PdfReader(file)
    parts = []
    for page in reader.pages:
        try:
            parts.append(page.extract_text() or "")
        except Exception:
            continue
    return "\n".join(parts)

def chunk_text(text: str, chars: int = 3500) -> list[Document]:
    docs = []
    for i in range(0, len(text), chars):
        chunk = text[i:i+chars].strip()
        if chunk:
            docs.append(Document(text=chunk, metadata={"chunk_id": i // chars}))
    return docs

def edges_to_rdf(edges):
    """Convert knowledge-graph-maker edges to RDF-like triples."""
    triples = []
    for e in edges:
        s = (e.node_1.name or "").strip()
        p = (e.relationship or "").strip() or "related_to"
        o = (e.node_2.name or "").strip()
        if s and o:
            triples.append({"subject": s, "predicate": p, "object": o})
    return triples

from collections import Counter
def count_relation_frequency(triples):
    """Return (freq_triplet, freq_predicate)."""
    freq_triplet = Counter((t["subject"], t["predicate"], t["object"]) for t in triples)
    freq_predicate = Counter(t["predicate"] for t in triples)
    return freq_triplet, freq_predicate

# Color bins for predicate frequency
COLOR_BINS = [
    (8, "#2F3B52", "freq β‰₯ 8"),
    (5, "#4E6E9E", "5–7"),
    (3, "#7FA6F8", "3–4"),
    (1, "#BFD3FF", "1–2"),
]
def color_for_predicate(p, freq_pred):
    f = freq_pred[p]
    if f >= 8:   return "#2F3B52"
    if f >= 5:   return "#4E6E9E"
    if f >= 3:   return "#7FA6F8"
    return "#BFD3FF"

def render_color_legend(freq_pred):
    if not freq_pred:
        return
    counts = {"β‰₯8":0, "5–7":0, "3–4":0, "1–2":0}
    for _, f in freq_pred.items():
        if f >= 8: counts["β‰₯8"] += 1
        elif f >= 5: counts["5–7"] += 1
        elif f >= 3: counts["3–4"] += 1
        else: counts["1–2"] += 1
    st.markdown("#### Legend (predicate frequency β†’ edge color)")
    cols = st.columns(4)
    bins_disp = [
        ("#2F3B52", "β‰₯8", counts["β‰₯8"]),
        ("#4E6E9E", "5–7", counts["5–7"]),
        ("#7FA6F8", "3–4", counts["3–4"]),
        ("#BFD3FF", "1–2", counts["1–2"]),
    ]
    for (c, label, cnt), col in zip(bins_disp, cols):
        col.markdown(
            f"""
<div style="display:flex;align-items:center;gap:8px;">
  <div style="width:18px;height:12px;background:{c};border:1px solid #999;"></div>
  <div><b>{label}</b> <span style="color:#666">({cnt})</span></div>
</div>
""",
            unsafe_allow_html=True
        )

# ── PyVis renderer (inline assets, optional labels) ─────────────────────────────
def edges_to_pyvis_with_freq(edges, label_mode: str):
    triples = edges_to_rdf(edges)
    freq_triplet, freq_pred = count_relation_frequency(triples)

    net = Network(
        height="700px",
        width="100%",
        bgcolor="#ffffff",
        font_color="#222222",
        notebook=False,
        directed=False,
        cdn_resources="in_line",
    )

    # βœ… valid JSON (not JS)
    net.set_options(json.dumps(PYVIS_OPTIONS))

    seen = set()
    for t in triples:
        s, p, o = t["subject"], t["predicate"], t["object"]
        n1, n2 = f"Entity:{s}", f"Entity:{o}"

        if n1 not in seen:
            net.add_node(n1, label=s, title="Entity")
            seen.add(n1)
        if n2 not in seen:
            net.add_node(n2, label=o, title="Entity")
            seen.add(n2)

        width_val = int(max(1, freq_triplet[(s, p, o)]))
        edge_kwargs = {
            "title": p,
            "value": width_val,
            "color": color_for_predicate(p, freq_pred),
        }
        if label_mode == "Always visible":
            edge_kwargs["label"] = p
        net.add_edge(n1, n2, **edge_kwargs)

    net.toggle_physics(True)
    return net, triples, freq_triplet, freq_pred


# ── Cytoscape.js renderer (embedded HTML; no new Python deps) ───────────────────
def cytoscape_html(triples, freq_triplet, freq_pred, label_mode: str):
    """
    Self-contained HTML with Cytoscape.js via CDN.
    - Edge width = exact triple frequency
    - Edge color = predicate frequency bin
    - Labels: nodes always labeled; edges labeled per label_mode
    """
    node_ids = {}
    nodes, edges = [], []

    def node_id(name):
        if name not in node_ids:
            node_ids[name] = f"n{len(node_ids)}"
            nodes.append({"data": {"id": node_ids[name], "label": name}})
        return node_ids[name]

    for t in triples:
        s, p, o = t["subject"], t["predicate"], t["object"]
        sid, oid = node_id(s), node_id(o)
        width_val = max(1, int(freq_triplet[(s, p, o)]))
        color = color_for_predicate(p, freq_pred)
        edge_label = p if label_mode == "Always visible" else ""
        edges.append({"data": {
            "id": f"e{len(edges)}",
            "source": sid, "target": oid,
            "label": edge_label, "title": p,
            "width": width_val, "color": color
        }})

    elements = nodes + edges
    html = f"""
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width,initial-scale=1" />
<style>
  html, body, #cy {{ width: 100%; height: 700px; margin: 0; padding: 0; background: #fff; }}
</style>
<script src="https://unpkg.com/[email protected]/dist/cytoscape.min.js"></script>
</head>
<body>
<div id="cy"></div>
<script>
  const elements = {json.dumps(elements)};
  const cy = cytoscape({{
    container: document.getElementById('cy'),
    elements: elements,
    style: [
      {{
        selector: 'node',
        style: {{
          'label': 'data(label)',
          'text-valign': 'center',
          'text-halign': 'center',
          'font-size': 12,
          'background-color': '#76A5FD',
          'color': '#222'
        }}
      }},
      {{
        selector: 'edge',
        style: {{
          'line-color': 'data(color)',
          'width': 'mapData(width, 1, 10, 1, 10)',
          'curve-style': 'bezier',
          'target-arrow-shape': 'none',
          'label': 'data(label)',
          'font-size': 10,
          'text-rotation': 'autorotate',
          'text-margin-y': -4
        }}
      }}
    ],
    layout: {{
      name: 'cose',
      animate: true,
      nodeRepulsion: 8000,
      idealEdgeLength: 120,
      gravity: 1.2,
      numIter: 1000
    }}
  }});
</script>
</body>
</html>
"""
    return html

# ── Input tabs ─────────────────────────────────────────────────────────────────
tab_text, tab_pdf = st.tabs(["πŸ“ Paste Text", "πŸ“„ Upload PDF"])
input_text = ""
with tab_text:
    input_text = st.text_area("Paste your text here", height=220, placeholder="Paste text…")
with tab_pdf:
    pdf_file = st.file_uploader("Upload a PDF", type=["pdf"])
    if pdf_file:
        input_text = pdf_to_text(pdf_file)

# ── Action ─────────────────────────────────────────────────────────────────────
if st.button("Generate Knowledge Graph", type="primary"):
    if not input_text.strip():
        st.warning("Please provide text or a PDF.")
        st.stop()
    if not OPENROUTER_API_KEY:
        st.error("OPENROUTER_API_KEY is not set in Space Secrets.")
        st.stop()

    # Route OpenAI SDK traffic through OpenRouter (OpenAI-compatible)
    os.environ["OPENAI_API_KEY"] = OPENROUTER_API_KEY
    os.environ["OPENAI_BASE_URL"] = "https://openrouter.ai/api/v1"
    os.environ["OPENAI_DEFAULT_HEADERS"] = (
        '{"HTTP-Referer":"https://huggingface.co/spaces/blazingbunny/rahulnyk_knowledge_graph",'
        '"X-Title":"Knowledge Graph (OpenRouter)"}'
    )

    selected_model = custom_model.strip() if custom_model.strip() else model_choice

    # Ontology
    ontology = Ontology(
        labels=parse_labels(labels_text),
        relationships=[r.strip() for r in relationships_text.split(",") if r.strip()] or
                      ["Relation between any pair of Entities"],
    )

    st.info("Chunking input and building graph…")
    docs = chunk_text(input_text)

    # LLM client (OpenRouter via OpenAI client)
    llm = OpenAIClient(model=selected_model, temperature=temperature, top_p=top_p)

    gm = GraphMaker(ontology=ontology, llm_client=llm, verbose=False)
    edges = gm.from_documents(docs, delay_s_between=0)

    st.success(f"Graph built with {len(edges)} edges.")

    # Show edges table
    df = pd.DataFrame([{
        "node_1_label": e.node_1.label, "node_1": e.node_1.name,
        "node_2_label": e.node_2.label, "node_2": e.node_2.name,
        "relationship": e.relationship or "related_to"
    } for e in edges])
    st.dataframe(df, use_container_width=True)

    # ---- Render: PyVis or Cytoscape.js
    if renderer == "PyVis (interactive)":
        net, triples, freq_triplet, freq_pred = edges_to_pyvis_with_freq(edges, label_mode)
        html = net.generate_html()   # no disk I/O
        st.components.v1.html(html, height=750, scrolling=True)
    else:
        triples = edges_to_rdf(edges)
        freq_triplet, freq_pred = count_relation_frequency(triples)
        html = cytoscape_html(triples, freq_triplet, freq_pred, label_mode)
        st.components.v1.html(html, height=750, scrolling=True)

    # Legend (optional)
    if show_legend:
        render_color_legend(freq_pred)

    # Download RDF tuples as JSON (in-memory bytes, no filesystem)
    json_bytes = io.BytesIO(json.dumps(triples, ensure_ascii=False, indent=2).encode("utf-8"))
    st.download_button(
        "Download RDF tuples (JSON)",
        data=json_bytes.getvalue(),
        file_name="rdf_tuples.json",
        mime="application/json"
    )

st.markdown("---")
st.caption("Powered by knowledge-graph-maker via OpenRouter.")