Spaces:
Build error
Build error
File size: 12,864 Bytes
078f44f 152453b 5f9191a ed684ca fbf90c5 59f2d4b 078f44f ef5ddf0 ee2c558 078f44f ef5ddf0 62583c5 078f44f ef5ddf0 078f44f ef5ddf0 078f44f ef5ddf0 078f44f ef5ddf0 078f44f 5f9191a 078f44f b27703e 078f44f b27703e 078f44f b27703e 078f44f b27703e 078f44f ef5ddf0 078f44f 04a745e ef5ddf0 078f44f ef5ddf0 078f44f c9cedce 078f44f c9cedce 078f44f b3fa88f 8122ec3 c944b5f 0353945 ae1efe6 dbcbe15 d39741b dbcbe15 d39741b dbcbe15 d39741b dbcbe15 d39741b dbcbe15 d39741b dbcbe15 d39741b dbcbe15 7073649 8a34feb 7073649 40b4f7e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 |
# masking_ver2.py
import re
import gradio as gr
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
def dummy(text):
return text + " ✅"
with gr.Blocks() as demo:
inp = gr.Textbox(label="입력")
out = gr.Textbox(label="출력")
btn = gr.Button("실행")
btn.click(fn=dummy, inputs=inp, outputs=out)
def sanitize_sensitive_info(text, keyword_string, replace_word):
# 📍 기관 키워드 치환
keywords = [k.strip() for k in keyword_string.split(",") if k.strip()]
for kw in keywords:
pattern = rf"{re.escape(kw)}(?=\W|$)"
text = re.sub(pattern, replace_word, text, flags=re.IGNORECASE)
# 📍 기본 민감정보 마스킹 예시 (이메일 앞부분 마스킹)
text = re.sub(r"\b[\w\.-]+@", "******@", text)
return text
# =============================================
# Configurable Constants
# =============================================
TAG_PREFIX = "N"
NAME_ENTITY_EXCEPTIONS = set([
'법적', '군의', '사회적', '심리적', '행정적', '의료적', '법률적',
'개인정보', '본인', '해당', '현재', '아래', '위치', '소속',
'상담', '그래도'
])
REGEX_KEYWORDS_TO_MASK = set([
'이메일', '전화번호', '연락처', '주소', '센터', '카드번호', '주민등록번호', 'IP', 'IP주소', '계좌번호'
])
# 분리된 suffix 그룹
FAMILY_TITLES = ['어머니', '아버지', '엄마', '아빠', '형', '누나', '언니', '오빠', '동생', '아들', '딸',
'할머니', '할아버지', '외할머니', '외할아버지', '이모', '고모', '삼촌', '숙모', '외삼촌',
'고모부', '이모부', '조카', '사촌', '남편', '아내', '부인', '와이프', '신랑', '장모',
'장인', '사위', '며느리', '올케', '형수', '제수씨', '매형', '처제', '시누이']
ACADEMIC_TITLES = ['학생', '초등학생', '중학생', '고등학생', '수험생', '학부모']
OCCUPATIONAL_TITLES = ['대표', '이사', '전무', '상무', '부장', '차장', '과장', '대리', '사원',
'실장', '팀장', '소장', '국장', '본부장', '주임', '총무', '회장', '부회장',
'사무장', '직원', '매니저', '지점장', '선생님', '선생', '교사', '교장',
'교감', '부교장', '조교수', '교수', '연구원', '강사', '박사', '석사', '학사',
'의사', '간호사', '간병인', '보호자', '피해자', '당사자', '대상자', '주민', '어르신', '기사님']
COMMON_SUFFIXES = FAMILY_TITLES + ACADEMIC_TITLES + OCCUPATIONAL_TITLES
# =============================================
# Preload Model
# =============================================
model_name = "Leo97/KoELECTRA-small-v3-modu-ner"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForTokenClassification.from_pretrained(model_name)
ner_pipeline = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="simple")
# =============================================
# Utility Functions
# =============================================
def to_chosung(text):
CHOSUNG_LIST = [chr(i) for i in range(0x1100, 0x1113)]
result = ""
for ch in text:
if '가' <= ch <= '힣':
code = ord(ch) - ord('가')
cho = code // 588
result += CHOSUNG_LIST[cho]
else:
result += ch
return result
def postprocess_sensitive_patterns(text):
text = re.sub(r"\b[\w\.-]+@", r"******@", text) # 이메일: 골뱅이 앞만 가리기
def mask_sequence(match):
parts = re.split(r'[.-]', match.group())
masked = []
for i, part in enumerate(parts):
if part.isdigit():
if i % 2 == 0:
masked.append(part)
else:
masked.append('*' * len(part))
else:
masked.append(part)
return '.'.join(masked) if '.' in match.group() else '-'.join(masked)
text = re.sub(r"(?<![\\$\\\\])(?<!\d,)(?:\d{2,4}[.-]){1,3}\d{2,4}(?!\d)", mask_sequence, text)
text = re.sub(r"(\d{1,3})동", r"***동", text) # 동 정보
text = re.sub(r"(\d{1,4})호", r"****호", text) # 호수 정보
return text
# =============================================
# Masking Core Functions
# =============================================
def extract_names(text):
try:
results = ner_pipeline(text)
except Exception as e:
print("NER 오류 발생:", e)
return []
names = []
base_names = set()
for entity in results:
if entity.get("entity_group") == "PS":
name = entity["word"].replace("##", "").strip()
if len(name) >= 2 and name not in NAME_ENTITY_EXCEPTIONS:
names.append(name)
base_names.add(name)
KOREAN_JOSA = r'(이[가]|은|는|을|를|과|와|의|도|만|께서|에서|으로|에게|한테|보다|까지|부터)?'
attached = r'([가-힣]{2,4})(?:' + '|'.join(COMMON_SUFFIXES) + r')' + KOREAN_JOSA
spaced = r'([가-힣]{2,4})\s+(?:' + '|'.join(COMMON_SUFFIXES) + r')' + KOREAN_JOSA
for pattern in [attached, spaced]:
for match in re.findall(pattern, text):
name = match[0]
if name not in names and name not in NAME_ENTITY_EXCEPTIONS:
names.append(name)
# 🧠 후처리: 이름+조사 붙은 경우로도 다시 추출
for name in base_names:
for suffix in COMMON_SUFFIXES:
for josa in ["", "은", "는", "이", "가", "을", "를", "도", "과", "와", "께서", "에서", "으로"]:
pattern = rf'{re.escape(name)}\s?{suffix}{josa}'
if re.search(pattern, text):
if name not in names:
names.append(name)
return names
def refactored_mask_names(original_text, names, start_counter=100):
korean_josa = ['이가','를','은','는','을','도','만','과','와','에게','에서','으로','까지','조차','마저','이며','이다','이나','이나마','밖에','이든','이라도','이','가','의']
masked = original_text
mapping = {}
counter = start_counter
used_names = set()
for name in names:
for josa in korean_josa:
full = name + josa
pattern = rf'(?<![\w가-힣]){re.escape(full)}(?![\w가-힣])'
if re.search(pattern, masked):
tag = f"{TAG_PREFIX}{counter:03d}"
mapping[tag] = name
masked = re.sub(pattern, tag + josa, masked)
counter += 1
used_names.add(name)
break
for name in names:
if name in used_names:
continue
pattern = rf'(?<![\w가-힣]){re.escape(name)}(?![\w가-힣])'
if re.search(pattern, masked):
tag = f"{TAG_PREFIX}{counter:03d}"
mapping[tag] = name
masked = re.sub(pattern, tag, masked)
counter += 1
return masked, mapping
def final_name_remask_exact_only(text, mapping_dict):
for tag, name in mapping_dict.items():
pattern = rf'(?<![\w가-힣]){re.escape(name)}(?![\w가-힣])'
text = re.sub(pattern, tag, text)
return text
def mask_department(text):
return re.sub(r"([가-힣]{2,20}학과)", lambda m: to_chosung(m.group(1)[:-2]) + "학과", text)
def mask_school_names(text):
global school_name_candidates
school_name_candidates = []
def replacer(match):
name = match.group(1)
if 2 <= len(name) <= 20:
school_name_candidates.append(name)
return to_chosung(name) + match.group(2)
return match.group(0)
text = re.sub(r"(\b[가-힣]{2,20})(초등학교|중학교|고등학교)", replacer, text)
for name in school_name_candidates:
pattern = rf"{re.escape(name)}\s?(초등학교|중학교|고등학교)"
text = re.sub(pattern, to_chosung(name) + " " + r"\1", text)
return text
def sanitize_sensitive_info(text, keyword_string, replace_word):
text = postprocess_sensitive_patterns(text) # 먼저 처리
text = mask_school_names(text)
text = mask_department(text)
text = re.sub(r"(\d)학년(\s?(\d)반)?", lambda m: "*학년" + (" *반" if m.group(3) else ""), text)
keywords = [k.strip() for k in keyword_string.split(",") if k.strip()] + list(REGEX_KEYWORDS_TO_MASK)
for kw in keywords:
pattern = rf"\b{re.escape(kw)}\b"
text = re.sub(pattern, replace_word, text, flags=re.IGNORECASE)
text = re.sub(r"(\d{6})[-](\d)\d{6}", r"*******-\2*****", text)
text = re.sub(r"([가-힣]+(대로|로|길))\s?(\d+)(호|번길|가)?", r"\1 ***", text)
return text
# 🔹 마스킹 함수 (정리된 최종본)
def extract_names(text):
try:
results = ner_pipeline(text)
except Exception as e:
print("NER 오류 발생:", e)
return []
names = []
for entity in results:
if entity.get("entity_group") == "PS":
name = entity["word"].replace("##", "").strip()
if len(name) >= 2 and name not in NAME_ENTITY_EXCEPTIONS:
names.append(name)
return names
def refactored_mask_names(text, names):
counter = 1
mapping = {}
used_names = set()
masked = text
for name in names:
# 조사 구분 있는 경우
for josa in ["은", "는", "이", "가", "을", "를", "께서", "도", "만", "의", "에서"]:
pattern = rf'(?<![\w가-힣]){re.escape(name)}{josa}(?![\w가-힣])'
if re.search(pattern, masked):
tag = f"{TAG_PREFIX}{counter:03d}"
mapping[tag] = name
masked = re.sub(pattern, tag + josa, masked)
counter += 1
used_names.add(name)
break
for name in names:
if name in used_names:
continue
pattern = rf'(?<![\w가-힣]){re.escape(name)}(?![\w가-힣])'
if re.search(pattern, masked):
tag = f"{TAG_PREFIX}{counter:03d}"
mapping[tag] = name
masked = re.sub(pattern, tag, masked)
counter += 1
return masked, mapping
def final_name_remask_exact_only(text, mapping_dict):
for tag, name in mapping_dict.items():
pattern = rf'(?<![\w가-힣]){re.escape(name)}(?![\w가-힣])'
text = re.sub(pattern, tag, text)
return text
def sanitize_sensitive_info(text, keyword_string, replace_word):
text = postprocess_sensitive_patterns(text)
text = mask_school_names(text)
text = mask_department(text)
text = re.sub(r"(\d)학년(\s?(\d)반)?", lambda m: "*학년" + (" *반" if m.group(3) else ""), text)
keywords = [k.strip() for k in keyword_string.split(",") if k.strip()] + list(REGEX_KEYWORDS_TO_MASK)
for kw in keywords:
pattern = rf"{re.escape(kw)}(?=\W|$)"
text = re.sub(pattern, replace_word, text, flags=re.IGNORECASE)
text = re.sub(r"(\d{6})[-](\d)\d{6}", r"*******-\2*****", text)
text = re.sub(r"([가-힣]+(대로|로|길))\s?(\d+)(호|번길|가)?", r"\1 ***", text)
return text
def apply_masking(text, keyword_str, replace_word):
keywords = [kw.strip() for kw in keyword_str.split(",") if kw.strip()]
names = extract_names(text)
masked_text, name_mapping = refactored_mask_names(text, names)
sanitized_text = sanitize_sensitive_info(masked_text, keyword_str, replace_word)
final_text = final_name_remask_exact_only(sanitized_text, name_mapping)
mapping_table = "\n".join(f"{k} → {v}" for k, v in name_mapping.items())
return final_text, mapping_table
# 📦 PART 4: 기관 키워드 치환기 + Gradio UI 실행기
import gradio as gr
# ✅ 마스킹 실행 함수는 기존에 작성된 apply_full_masking() 사용
with gr.Blocks() as demo:
gr.Markdown("🧠 **v5.0 마스킹 통합 시스템** — 키워드, 이름, 개인정보, 학교 마스킹")
input_text = gr.Textbox(lines=15, label="📄 원문 텍스트")
keyword_input = gr.Textbox(lines=1, label="기관 키워드 (쉼표로 구분)", value="굿네이버스, 사회복지법인 굿네이버스")
replace_input = gr.Textbox(lines=1, label="치환할 텍스트", value="우리기관")
run_button = gr.Button("🚀 실행")
masked_output = gr.Textbox(lines=15, label="🔐 마스킹 결과")
mapping_output = gr.Textbox(lines=10, label="🏷️ 태그 매핑", interactive=False)
run_button.click(
fn=apply_masking, # ← 이걸로 바꿔야 실제 정의된 함수와 연결됨
inputs=[input_text, keyword_input, replace_input],
outputs=[masked_output, mapping_output]
)
# ✅ 반드시 필요! Gradio 실행
demo.launch(share=True, log=False)
|