File size: 12,864 Bytes
078f44f
152453b
 
5f9191a
ed684ca
fbf90c5
 
 
 
 
 
 
 
 
59f2d4b
 
 
 
 
 
 
 
 
 
 
 
 
 
078f44f
 
 
ef5ddf0
ee2c558
078f44f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef5ddf0
 
 
 
62583c5
078f44f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef5ddf0
078f44f
 
 
 
 
 
ef5ddf0
078f44f
ef5ddf0
 
 
078f44f
ef5ddf0
078f44f
5f9191a
078f44f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b27703e
078f44f
 
 
b27703e
078f44f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b27703e
078f44f
b27703e
078f44f
ef5ddf0
078f44f
 
 
 
04a745e
ef5ddf0
078f44f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef5ddf0
 
078f44f
 
 
 
 
c9cedce
078f44f
 
 
 
c9cedce
078f44f
 
 
b3fa88f
8122ec3
c944b5f
0353945
 
 
 
 
 
 
 
 
 
 
 
 
 
ae1efe6
dbcbe15
d39741b
dbcbe15
d39741b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbcbe15
 
d39741b
 
 
 
 
 
 
dbcbe15
d39741b
dbcbe15
 
d39741b
 
dbcbe15
 
 
 
 
 
d39741b
dbcbe15
 
 
7073649
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a34feb
 
 
7073649
 
 
40b4f7e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
# masking_ver2.py
import re
import gradio as gr
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline

def dummy(text):
    return text + " ✅"

with gr.Blocks() as demo:
    inp = gr.Textbox(label="입력")
    out = gr.Textbox(label="출력")
    btn = gr.Button("실행")
    btn.click(fn=dummy, inputs=inp, outputs=out)

def sanitize_sensitive_info(text, keyword_string, replace_word):
    # 📍 기관 키워드 치환
    keywords = [k.strip() for k in keyword_string.split(",") if k.strip()]
    for kw in keywords:
        pattern = rf"{re.escape(kw)}(?=\W|$)"
        text = re.sub(pattern, replace_word, text, flags=re.IGNORECASE)

    # 📍 기본 민감정보 마스킹 예시 (이메일 앞부분 마스킹)
    text = re.sub(r"\b[\w\.-]+@", "******@", text)

    return text



# =============================================
# Configurable Constants
# =============================================
TAG_PREFIX = "N"

NAME_ENTITY_EXCEPTIONS = set([
    '법적', '군의', '사회적', '심리적', '행정적', '의료적', '법률적',
    '개인정보', '본인', '해당', '현재', '아래', '위치', '소속',
    '상담', '그래도'
])

REGEX_KEYWORDS_TO_MASK = set([
    '이메일', '전화번호', '연락처', '주소', '센터', '카드번호', '주민등록번호', 'IP', 'IP주소', '계좌번호'
])

# 분리된 suffix 그룹
FAMILY_TITLES = ['어머니', '아버지', '엄마', '아빠', '형', '누나', '언니', '오빠', '동생', '아들', '딸',
                 '할머니', '할아버지', '외할머니', '외할아버지', '이모', '고모', '삼촌', '숙모', '외삼촌',
                 '고모부', '이모부', '조카', '사촌', '남편', '아내', '부인', '와이프', '신랑', '장모',
                 '장인', '사위', '며느리', '올케', '형수', '제수씨', '매형', '처제', '시누이']

ACADEMIC_TITLES = ['학생', '초등학생', '중학생', '고등학생', '수험생', '학부모']

OCCUPATIONAL_TITLES = ['대표', '이사', '전무', '상무', '부장', '차장', '과장', '대리', '사원',
                        '실장', '팀장', '소장', '국장', '본부장', '주임', '총무', '회장', '부회장',
                        '사무장', '직원', '매니저', '지점장', '선생님', '선생', '교사', '교장',
                        '교감', '부교장', '조교수', '교수', '연구원', '강사', '박사', '석사', '학사',
                        '의사', '간호사', '간병인', '보호자', '피해자', '당사자', '대상자', '주민', '어르신', '기사님']

COMMON_SUFFIXES = FAMILY_TITLES + ACADEMIC_TITLES + OCCUPATIONAL_TITLES

# =============================================
# Preload Model
# =============================================
model_name = "Leo97/KoELECTRA-small-v3-modu-ner"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForTokenClassification.from_pretrained(model_name)
ner_pipeline = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="simple")

# =============================================
# Utility Functions
# =============================================
def to_chosung(text):
    CHOSUNG_LIST = [chr(i) for i in range(0x1100, 0x1113)]
    result = ""
    for ch in text:
        if '가' <= ch <= '힣':
            code = ord(ch) - ord('가')
            cho = code // 588
            result += CHOSUNG_LIST[cho]
        else:
            result += ch
    return result

def postprocess_sensitive_patterns(text):
    text = re.sub(r"\b[\w\.-]+@", r"******@", text)  # 이메일: 골뱅이 앞만 가리기

    def mask_sequence(match):
        parts = re.split(r'[.-]', match.group())
        masked = []
        for i, part in enumerate(parts):
            if part.isdigit():
                if i % 2 == 0:
                    masked.append(part)
                else:
                    masked.append('*' * len(part))
            else:
                masked.append(part)
        return '.'.join(masked) if '.' in match.group() else '-'.join(masked)

    text = re.sub(r"(?<![\\$\\\\])(?<!\d,)(?:\d{2,4}[.-]){1,3}\d{2,4}(?!\d)", mask_sequence, text)
    text = re.sub(r"(\d{1,3})동", r"***동", text)  # 동 정보
    text = re.sub(r"(\d{1,4})호", r"****호", text)  # 호수 정보
    return text

# =============================================
# Masking Core Functions
# =============================================
def extract_names(text):
    try:
        results = ner_pipeline(text)
    except Exception as e:
        print("NER 오류 발생:", e)
        return []

    names = []
    base_names = set()
    for entity in results:
        if entity.get("entity_group") == "PS":
            name = entity["word"].replace("##", "").strip()
            if len(name) >= 2 and name not in NAME_ENTITY_EXCEPTIONS:
                names.append(name)
                base_names.add(name)

    KOREAN_JOSA = r'(이[가]|은|는|을|를|과|와|의|도|만|께서|에서|으로|에게|한테|보다|까지|부터)?'
    attached = r'([가-힣]{2,4})(?:' + '|'.join(COMMON_SUFFIXES) + r')' + KOREAN_JOSA
    spaced = r'([가-힣]{2,4})\s+(?:' + '|'.join(COMMON_SUFFIXES) + r')' + KOREAN_JOSA

    for pattern in [attached, spaced]:
        for match in re.findall(pattern, text):
            name = match[0]
            if name not in names and name not in NAME_ENTITY_EXCEPTIONS:
                names.append(name)

    # 🧠 후처리: 이름+조사 붙은 경우로도 다시 추출
    for name in base_names:
        for suffix in COMMON_SUFFIXES:
            for josa in ["", "은", "는", "이", "가", "을", "를", "도", "과", "와", "께서", "에서", "으로"]:
                pattern = rf'{re.escape(name)}\s?{suffix}{josa}'
                if re.search(pattern, text):
                    if name not in names:
                        names.append(name)
    return names




def refactored_mask_names(original_text, names, start_counter=100):
    korean_josa = ['이가','를','은','는','을','도','만','과','와','에게','에서','으로','까지','조차','마저','이며','이다','이나','이나마','밖에','이든','이라도','이','가','의']
    masked = original_text
    mapping = {}
    counter = start_counter
    used_names = set()

    for name in names:
        for josa in korean_josa:
            full = name + josa
            pattern = rf'(?<![\w가-힣]){re.escape(full)}(?![\w가-힣])'
            if re.search(pattern, masked):
                tag = f"{TAG_PREFIX}{counter:03d}"
                mapping[tag] = name
                masked = re.sub(pattern, tag + josa, masked)
                counter += 1
                used_names.add(name)
                break
    for name in names:
        if name in used_names:
            continue
        pattern = rf'(?<![\w가-힣]){re.escape(name)}(?![\w가-힣])'
        if re.search(pattern, masked):
            tag = f"{TAG_PREFIX}{counter:03d}"
            mapping[tag] = name
            masked = re.sub(pattern, tag, masked)
            counter += 1
    return masked, mapping

def final_name_remask_exact_only(text, mapping_dict):
    for tag, name in mapping_dict.items():
        pattern = rf'(?<![\w가-힣]){re.escape(name)}(?![\w가-힣])'
        text = re.sub(pattern, tag, text)
    return text

def mask_department(text):
    return re.sub(r"([가-힣]{2,20}학과)", lambda m: to_chosung(m.group(1)[:-2]) + "학과", text)

def mask_school_names(text):
    global school_name_candidates
    school_name_candidates = []

    def replacer(match):
        name = match.group(1)
        if 2 <= len(name) <= 20:
            school_name_candidates.append(name)
            return to_chosung(name) + match.group(2)
        return match.group(0)

    text = re.sub(r"(\b[가-힣]{2,20})(초등학교|중학교|고등학교)", replacer, text)
    for name in school_name_candidates:
        pattern = rf"{re.escape(name)}\s?(초등학교|중학교|고등학교)"
        text = re.sub(pattern, to_chosung(name) + " " + r"\1", text)
    return text

def sanitize_sensitive_info(text, keyword_string, replace_word):
    text = postprocess_sensitive_patterns(text)  # 먼저 처리
    text = mask_school_names(text)
    text = mask_department(text)
    text = re.sub(r"(\d)학년(\s?(\d)반)?", lambda m: "*학년" + (" *반" if m.group(3) else ""), text)

    keywords = [k.strip() for k in keyword_string.split(",") if k.strip()] + list(REGEX_KEYWORDS_TO_MASK)
    for kw in keywords:
        pattern = rf"\b{re.escape(kw)}\b"
        text = re.sub(pattern, replace_word, text, flags=re.IGNORECASE)

    text = re.sub(r"(\d{6})[-](\d)\d{6}", r"*******-\2*****", text)
    text = re.sub(r"([가-힣]+(대로|로|길))\s?(\d+)(호|번길|가)?", r"\1 ***", text)
    return text

# 🔹 마스킹 함수 (정리된 최종본)
def extract_names(text):
    try:
        results = ner_pipeline(text)
    except Exception as e:
        print("NER 오류 발생:", e)
        return []

    names = []
    for entity in results:
        if entity.get("entity_group") == "PS":
            name = entity["word"].replace("##", "").strip()
            if len(name) >= 2 and name not in NAME_ENTITY_EXCEPTIONS:
                names.append(name)
    return names


def refactored_mask_names(text, names):
    counter = 1
    mapping = {}
    used_names = set()
    masked = text

    for name in names:
        # 조사 구분 있는 경우
        for josa in ["은", "는", "이", "가", "을", "를", "께서", "도", "만", "의", "에서"]:
            pattern = rf'(?<![\w가-힣]){re.escape(name)}{josa}(?![\w가-힣])'
            if re.search(pattern, masked):
                tag = f"{TAG_PREFIX}{counter:03d}"
                mapping[tag] = name
                masked = re.sub(pattern, tag + josa, masked)
                counter += 1
                used_names.add(name)
                break
    for name in names:
        if name in used_names:
            continue
        pattern = rf'(?<![\w가-힣]){re.escape(name)}(?![\w가-힣])'
        if re.search(pattern, masked):
            tag = f"{TAG_PREFIX}{counter:03d}"
            mapping[tag] = name
            masked = re.sub(pattern, tag, masked)
            counter += 1
    return masked, mapping

def final_name_remask_exact_only(text, mapping_dict):
    for tag, name in mapping_dict.items():
        pattern = rf'(?<![\w가-힣]){re.escape(name)}(?![\w가-힣])'
        text = re.sub(pattern, tag, text)
    return text

def sanitize_sensitive_info(text, keyword_string, replace_word):
    text = postprocess_sensitive_patterns(text)
    text = mask_school_names(text)
    text = mask_department(text)
    text = re.sub(r"(\d)학년(\s?(\d)반)?", lambda m: "*학년" + (" *반" if m.group(3) else ""), text)

    keywords = [k.strip() for k in keyword_string.split(",") if k.strip()] + list(REGEX_KEYWORDS_TO_MASK)
    for kw in keywords:
        pattern = rf"{re.escape(kw)}(?=\W|$)"
        text = re.sub(pattern, replace_word, text, flags=re.IGNORECASE)

    text = re.sub(r"(\d{6})[-](\d)\d{6}", r"*******-\2*****", text)
    text = re.sub(r"([가-힣]+(대로|로|길))\s?(\d+)(호|번길|가)?", r"\1 ***", text)
    return text

def apply_masking(text, keyword_str, replace_word):
    keywords = [kw.strip() for kw in keyword_str.split(",") if kw.strip()]
    names = extract_names(text)
    masked_text, name_mapping = refactored_mask_names(text, names)
    sanitized_text = sanitize_sensitive_info(masked_text, keyword_str, replace_word)
    final_text = final_name_remask_exact_only(sanitized_text, name_mapping)
    mapping_table = "\n".join(f"{k}{v}" for k, v in name_mapping.items())
    return final_text, mapping_table

# 📦 PART 4: 기관 키워드 치환기 + Gradio UI 실행기
import gradio as gr

# ✅ 마스킹 실행 함수는 기존에 작성된 apply_full_masking() 사용

with gr.Blocks() as demo:
    gr.Markdown("🧠 **v5.0 마스킹 통합 시스템** — 키워드, 이름, 개인정보, 학교 마스킹")

    input_text = gr.Textbox(lines=15, label="📄 원문 텍스트")
    keyword_input = gr.Textbox(lines=1, label="기관 키워드 (쉼표로 구분)", value="굿네이버스, 사회복지법인 굿네이버스")
    replace_input = gr.Textbox(lines=1, label="치환할 텍스트", value="우리기관")
    run_button = gr.Button("🚀 실행")

    masked_output = gr.Textbox(lines=15, label="🔐 마스킹 결과")
    mapping_output = gr.Textbox(lines=10, label="🏷️ 태그 매핑", interactive=False)

    run_button.click(
    fn=apply_masking,  # ← 이걸로 바꿔야 실제 정의된 함수와 연결됨
    inputs=[input_text, keyword_input, replace_input],
    outputs=[masked_output, mapping_output]
    )

# ✅ 반드시 필요! Gradio 실행
demo.launch(share=True, log=False)