masking / app.py
blueradiance's picture
Update app.py
40b4f7e verified
# masking_ver2.py
import re
import gradio as gr
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
def dummy(text):
return text + " ✅"
with gr.Blocks() as demo:
inp = gr.Textbox(label="입력")
out = gr.Textbox(label="출력")
btn = gr.Button("실행")
btn.click(fn=dummy, inputs=inp, outputs=out)
def sanitize_sensitive_info(text, keyword_string, replace_word):
# 📍 기관 키워드 치환
keywords = [k.strip() for k in keyword_string.split(",") if k.strip()]
for kw in keywords:
pattern = rf"{re.escape(kw)}(?=\W|$)"
text = re.sub(pattern, replace_word, text, flags=re.IGNORECASE)
# 📍 기본 민감정보 마스킹 예시 (이메일 앞부분 마스킹)
text = re.sub(r"\b[\w\.-]+@", "******@", text)
return text
# =============================================
# Configurable Constants
# =============================================
TAG_PREFIX = "N"
NAME_ENTITY_EXCEPTIONS = set([
'법적', '군의', '사회적', '심리적', '행정적', '의료적', '법률적',
'개인정보', '본인', '해당', '현재', '아래', '위치', '소속',
'상담', '그래도'
])
REGEX_KEYWORDS_TO_MASK = set([
'이메일', '전화번호', '연락처', '주소', '센터', '카드번호', '주민등록번호', 'IP', 'IP주소', '계좌번호'
])
# 분리된 suffix 그룹
FAMILY_TITLES = ['어머니', '아버지', '엄마', '아빠', '형', '누나', '언니', '오빠', '동생', '아들', '딸',
'할머니', '할아버지', '외할머니', '외할아버지', '이모', '고모', '삼촌', '숙모', '외삼촌',
'고모부', '이모부', '조카', '사촌', '남편', '아내', '부인', '와이프', '신랑', '장모',
'장인', '사위', '며느리', '올케', '형수', '제수씨', '매형', '처제', '시누이']
ACADEMIC_TITLES = ['학생', '초등학생', '중학생', '고등학생', '수험생', '학부모']
OCCUPATIONAL_TITLES = ['대표', '이사', '전무', '상무', '부장', '차장', '과장', '대리', '사원',
'실장', '팀장', '소장', '국장', '본부장', '주임', '총무', '회장', '부회장',
'사무장', '직원', '매니저', '지점장', '선생님', '선생', '교사', '교장',
'교감', '부교장', '조교수', '교수', '연구원', '강사', '박사', '석사', '학사',
'의사', '간호사', '간병인', '보호자', '피해자', '당사자', '대상자', '주민', '어르신', '기사님']
COMMON_SUFFIXES = FAMILY_TITLES + ACADEMIC_TITLES + OCCUPATIONAL_TITLES
# =============================================
# Preload Model
# =============================================
model_name = "Leo97/KoELECTRA-small-v3-modu-ner"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForTokenClassification.from_pretrained(model_name)
ner_pipeline = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="simple")
# =============================================
# Utility Functions
# =============================================
def to_chosung(text):
CHOSUNG_LIST = [chr(i) for i in range(0x1100, 0x1113)]
result = ""
for ch in text:
if '가' <= ch <= '힣':
code = ord(ch) - ord('가')
cho = code // 588
result += CHOSUNG_LIST[cho]
else:
result += ch
return result
def postprocess_sensitive_patterns(text):
text = re.sub(r"\b[\w\.-]+@", r"******@", text) # 이메일: 골뱅이 앞만 가리기
def mask_sequence(match):
parts = re.split(r'[.-]', match.group())
masked = []
for i, part in enumerate(parts):
if part.isdigit():
if i % 2 == 0:
masked.append(part)
else:
masked.append('*' * len(part))
else:
masked.append(part)
return '.'.join(masked) if '.' in match.group() else '-'.join(masked)
text = re.sub(r"(?<![\\$\\\\])(?<!\d,)(?:\d{2,4}[.-]){1,3}\d{2,4}(?!\d)", mask_sequence, text)
text = re.sub(r"(\d{1,3})동", r"***동", text) # 동 정보
text = re.sub(r"(\d{1,4})호", r"****호", text) # 호수 정보
return text
# =============================================
# Masking Core Functions
# =============================================
def extract_names(text):
try:
results = ner_pipeline(text)
except Exception as e:
print("NER 오류 발생:", e)
return []
names = []
base_names = set()
for entity in results:
if entity.get("entity_group") == "PS":
name = entity["word"].replace("##", "").strip()
if len(name) >= 2 and name not in NAME_ENTITY_EXCEPTIONS:
names.append(name)
base_names.add(name)
KOREAN_JOSA = r'(이[가]|은|는|을|를|과|와|의|도|만|께서|에서|으로|에게|한테|보다|까지|부터)?'
attached = r'([가-힣]{2,4})(?:' + '|'.join(COMMON_SUFFIXES) + r')' + KOREAN_JOSA
spaced = r'([가-힣]{2,4})\s+(?:' + '|'.join(COMMON_SUFFIXES) + r')' + KOREAN_JOSA
for pattern in [attached, spaced]:
for match in re.findall(pattern, text):
name = match[0]
if name not in names and name not in NAME_ENTITY_EXCEPTIONS:
names.append(name)
# 🧠 후처리: 이름+조사 붙은 경우로도 다시 추출
for name in base_names:
for suffix in COMMON_SUFFIXES:
for josa in ["", "은", "는", "이", "가", "을", "를", "도", "과", "와", "께서", "에서", "으로"]:
pattern = rf'{re.escape(name)}\s?{suffix}{josa}'
if re.search(pattern, text):
if name not in names:
names.append(name)
return names
def refactored_mask_names(original_text, names, start_counter=100):
korean_josa = ['이가','를','은','는','을','도','만','과','와','에게','에서','으로','까지','조차','마저','이며','이다','이나','이나마','밖에','이든','이라도','이','가','의']
masked = original_text
mapping = {}
counter = start_counter
used_names = set()
for name in names:
for josa in korean_josa:
full = name + josa
pattern = rf'(?<![\w가-힣]){re.escape(full)}(?![\w가-힣])'
if re.search(pattern, masked):
tag = f"{TAG_PREFIX}{counter:03d}"
mapping[tag] = name
masked = re.sub(pattern, tag + josa, masked)
counter += 1
used_names.add(name)
break
for name in names:
if name in used_names:
continue
pattern = rf'(?<![\w가-힣]){re.escape(name)}(?![\w가-힣])'
if re.search(pattern, masked):
tag = f"{TAG_PREFIX}{counter:03d}"
mapping[tag] = name
masked = re.sub(pattern, tag, masked)
counter += 1
return masked, mapping
def final_name_remask_exact_only(text, mapping_dict):
for tag, name in mapping_dict.items():
pattern = rf'(?<![\w가-힣]){re.escape(name)}(?![\w가-힣])'
text = re.sub(pattern, tag, text)
return text
def mask_department(text):
return re.sub(r"([가-힣]{2,20}학과)", lambda m: to_chosung(m.group(1)[:-2]) + "학과", text)
def mask_school_names(text):
global school_name_candidates
school_name_candidates = []
def replacer(match):
name = match.group(1)
if 2 <= len(name) <= 20:
school_name_candidates.append(name)
return to_chosung(name) + match.group(2)
return match.group(0)
text = re.sub(r"(\b[가-힣]{2,20})(초등학교|중학교|고등학교)", replacer, text)
for name in school_name_candidates:
pattern = rf"{re.escape(name)}\s?(초등학교|중학교|고등학교)"
text = re.sub(pattern, to_chosung(name) + " " + r"\1", text)
return text
def sanitize_sensitive_info(text, keyword_string, replace_word):
text = postprocess_sensitive_patterns(text) # 먼저 처리
text = mask_school_names(text)
text = mask_department(text)
text = re.sub(r"(\d)학년(\s?(\d)반)?", lambda m: "*학년" + (" *반" if m.group(3) else ""), text)
keywords = [k.strip() for k in keyword_string.split(",") if k.strip()] + list(REGEX_KEYWORDS_TO_MASK)
for kw in keywords:
pattern = rf"\b{re.escape(kw)}\b"
text = re.sub(pattern, replace_word, text, flags=re.IGNORECASE)
text = re.sub(r"(\d{6})[-](\d)\d{6}", r"*******-\2*****", text)
text = re.sub(r"([가-힣]+(대로|로|길))\s?(\d+)(호|번길|가)?", r"\1 ***", text)
return text
# 🔹 마스킹 함수 (정리된 최종본)
def extract_names(text):
try:
results = ner_pipeline(text)
except Exception as e:
print("NER 오류 발생:", e)
return []
names = []
for entity in results:
if entity.get("entity_group") == "PS":
name = entity["word"].replace("##", "").strip()
if len(name) >= 2 and name not in NAME_ENTITY_EXCEPTIONS:
names.append(name)
return names
def refactored_mask_names(text, names):
counter = 1
mapping = {}
used_names = set()
masked = text
for name in names:
# 조사 구분 있는 경우
for josa in ["은", "는", "이", "가", "을", "를", "께서", "도", "만", "의", "에서"]:
pattern = rf'(?<![\w가-힣]){re.escape(name)}{josa}(?![\w가-힣])'
if re.search(pattern, masked):
tag = f"{TAG_PREFIX}{counter:03d}"
mapping[tag] = name
masked = re.sub(pattern, tag + josa, masked)
counter += 1
used_names.add(name)
break
for name in names:
if name in used_names:
continue
pattern = rf'(?<![\w가-힣]){re.escape(name)}(?![\w가-힣])'
if re.search(pattern, masked):
tag = f"{TAG_PREFIX}{counter:03d}"
mapping[tag] = name
masked = re.sub(pattern, tag, masked)
counter += 1
return masked, mapping
def final_name_remask_exact_only(text, mapping_dict):
for tag, name in mapping_dict.items():
pattern = rf'(?<![\w가-힣]){re.escape(name)}(?![\w가-힣])'
text = re.sub(pattern, tag, text)
return text
def sanitize_sensitive_info(text, keyword_string, replace_word):
text = postprocess_sensitive_patterns(text)
text = mask_school_names(text)
text = mask_department(text)
text = re.sub(r"(\d)학년(\s?(\d)반)?", lambda m: "*학년" + (" *반" if m.group(3) else ""), text)
keywords = [k.strip() for k in keyword_string.split(",") if k.strip()] + list(REGEX_KEYWORDS_TO_MASK)
for kw in keywords:
pattern = rf"{re.escape(kw)}(?=\W|$)"
text = re.sub(pattern, replace_word, text, flags=re.IGNORECASE)
text = re.sub(r"(\d{6})[-](\d)\d{6}", r"*******-\2*****", text)
text = re.sub(r"([가-힣]+(대로|로|길))\s?(\d+)(호|번길|가)?", r"\1 ***", text)
return text
def apply_masking(text, keyword_str, replace_word):
keywords = [kw.strip() for kw in keyword_str.split(",") if kw.strip()]
names = extract_names(text)
masked_text, name_mapping = refactored_mask_names(text, names)
sanitized_text = sanitize_sensitive_info(masked_text, keyword_str, replace_word)
final_text = final_name_remask_exact_only(sanitized_text, name_mapping)
mapping_table = "\n".join(f"{k}{v}" for k, v in name_mapping.items())
return final_text, mapping_table
# 📦 PART 4: 기관 키워드 치환기 + Gradio UI 실행기
import gradio as gr
# ✅ 마스킹 실행 함수는 기존에 작성된 apply_full_masking() 사용
with gr.Blocks() as demo:
gr.Markdown("🧠 **v5.0 마스킹 통합 시스템** — 키워드, 이름, 개인정보, 학교 마스킹")
input_text = gr.Textbox(lines=15, label="📄 원문 텍스트")
keyword_input = gr.Textbox(lines=1, label="기관 키워드 (쉼표로 구분)", value="굿네이버스, 사회복지법인 굿네이버스")
replace_input = gr.Textbox(lines=1, label="치환할 텍스트", value="우리기관")
run_button = gr.Button("🚀 실행")
masked_output = gr.Textbox(lines=15, label="🔐 마스킹 결과")
mapping_output = gr.Textbox(lines=10, label="🏷️ 태그 매핑", interactive=False)
run_button.click(
fn=apply_masking, # ← 이걸로 바꿔야 실제 정의된 함수와 연결됨
inputs=[input_text, keyword_input, replace_input],
outputs=[masked_output, mapping_output]
)
# ✅ 반드시 필요! Gradio 실행
demo.launch(share=True, log=False)