chaty / app.py
hashhac
added
7afe31a
raw
history blame
7.23 kB
from fastrtc import (
ReplyOnPause, AdditionalOutputs, Stream,
audio_to_bytes, aggregate_bytes_to_16bit
)
import gradio as gr
import numpy as np
import torch
import os
from transformers import (
AutoModelForSpeechSeq2Seq,
AutoProcessor,
pipeline,
AutoTokenizer,
AutoModelForCausalLM,
AutoModelForSeq2SeqLM
)
from datasets import load_dataset
import scipy
# Check if CUDA is available, otherwise use CPU
device = "cuda" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
# Step 1: Audio transcription with Whisper
def load_asr_model():
model_id = "openai/whisper-small" # Smaller version that's more efficient
model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_id,
torch_dtype=torch_dtype,
low_cpu_mem_usage=True,
use_safetensors=True
)
model.to(device)
processor = AutoProcessor.from_pretrained(model_id)
return pipeline(
"automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
max_new_tokens=128,
chunk_length_s=30,
batch_size=16,
return_timestamps=False,
torch_dtype=torch_dtype,
device=device,
)
# Step 2: Text generation with a smaller LLM
def load_llm_model():
model_id = "facebook/opt-1.3b" # A smaller language model
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch_dtype,
low_cpu_mem_usage=True
)
model.to(device)
return model, tokenizer
# Step 3: Text-to-Speech with a free model
def load_tts_model():
model_id = "microsoft/speecht5_tts"
processor = AutoProcessor.from_pretrained(model_id)
model = AutoModelForSeq2SeqLM.from_pretrained(model_id)
model.to(device)
# Load vocoder for waveform generation
vocoder_id = "microsoft/speecht5_hifigan"
vocoder = AutoModelForCausalLM.from_pretrained(vocoder_id)
vocoder.to(device)
# Load speaker embeddings
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
speaker_embeddings = torch.tensor(embeddings_dataset[7]["xvector"]).unsqueeze(0)
return model, processor, vocoder, speaker_embeddings
# Initialize all models
print("Loading ASR model...")
asr_pipeline = load_asr_model()
print("Loading LLM model...")
llm_model, llm_tokenizer = load_llm_model()
print("Loading TTS model...")
tts_model, tts_processor, tts_vocoder, speaker_embeddings = load_tts_model()
# Chat history management
chat_history = []
def generate_response(prompt):
# If chat history is empty, add a system message
if not chat_history:
chat_history.append({"role": "system", "content": "You are a helpful, friendly AI assistant. Keep your responses concise and conversational."})
# Add user message to history
chat_history.append({"role": "user", "content": prompt})
# Prepare input for the model
full_prompt = ""
for message in chat_history:
if message["role"] == "system":
full_prompt += f"System: {message['content']}\n"
elif message["role"] == "user":
full_prompt += f"User: {message['content']}\n"
elif message["role"] == "assistant":
full_prompt += f"Assistant: {message['content']}\n"
full_prompt += "Assistant: "
# Generate response
inputs = llm_tokenizer(full_prompt, return_tensors="pt").to(device)
with torch.no_grad():
output = llm_model.generate(
**inputs,
max_new_tokens=128,
do_sample=True,
temperature=0.7,
top_p=0.9
)
response_text = llm_tokenizer.decode(output[0], skip_special_tokens=True)
response_text = response_text.split("Assistant: ")[-1].strip()
# Add assistant response to history
chat_history.append({"role": "assistant", "content": response_text})
# Keep history at a reasonable size
if len(chat_history) > 10:
# Keep system message and last 9 exchanges
chat_history.pop(1)
return response_text
def text_to_speech(text):
# Prepare inputs
inputs = tts_processor(text=text, return_tensors="pt")
# Add speaker embeddings
inputs["speaker_embeddings"] = speaker_embeddings.to(device)
# Generate speech
with torch.no_grad():
speech = tts_model.generate_speech(
inputs["input_ids"].to(device),
speaker_embeddings.to(device)
)
# Convert to waveform using vocoder
with torch.no_grad():
waveform = tts_vocoder(speech)
# Convert to numpy array
audio_array = waveform.cpu().numpy().squeeze()
# Normalize and convert to int16
audio_array = (audio_array / np.max(np.abs(audio_array)) * 32767).astype(np.int16)
# Reshape for fastrtc
audio_array = audio_array.reshape(1, -1)
return (24000, audio_array) # Using 24kHz sample rate
def response(audio: tuple[int, np.ndarray]):
# Step 1: Speech-to-Text
transcript = asr_pipeline({"sampling_rate": audio[0], "raw": audio[1].flatten()})
prompt = transcript["text"]
# Step 2: Generate text response
response_text = generate_response(prompt)
# Step 3: Text-to-Speech
sample_rate, audio_array = text_to_speech(response_text)
# Convert to expected format
chunk_size = 4800 # 200ms chunks at 24kHz
for i in range(0, audio_array.shape[1], chunk_size):
chunk = audio_array[:, i:i+chunk_size]
if chunk.size > 0: # Ensure we don't yield empty chunks
yield (sample_rate, chunk)
stream = Stream(
modality="audio",
mode="send-receive",
handler=ReplyOnPause(response),
)
# For testing without WebRTC
def demo():
with gr.Blocks() as demo:
gr.Markdown("# Local Voice Chatbot")
audio_input = gr.Audio(sources=["microphone"], type="numpy")
audio_output = gr.Audio()
def process_audio(audio):
if audio is None:
return None
sample_rate, audio_array = audio
transcript = asr_pipeline({"sampling_rate": sample_rate, "raw": audio_array.flatten()})
prompt = transcript["text"]
print(f"Transcribed: {prompt}")
response_text = generate_response(prompt)
print(f"Response: {response_text}")
sample_rate, audio_array = text_to_speech(response_text)
return (sample_rate, audio_array[0])
audio_input.change(process_audio, inputs=[audio_input], outputs=[audio_output])
demo.launch()
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--demo", action="store_true", help="Run Gradio demo instead of WebRTC")
args = parser.parse_args()
if args.demo:
demo()
else:
# For running with FastRTC
# You would need to add your FastRTC server code here
pass