TalHach61's picture
Create app.py
93e5c88 verified
import sys
sys.path.append('./')
import gradio as gr
import spaces
import os
import sys
import subprocess
import numpy as np
from PIL import Image
import cv2
import torch
import random
os.system("pip install -e ./controlnet_aux")
from controlnet_aux import OpenposeDetector #, CannyDetector
from depth_anything_v2.dpt import DepthAnythingV2
from huggingface_hub import hf_hub_download
from huggingface_hub import login
hf_token = os.environ.get("HF_TOKEN")
login(token=hf_token)
MAX_SEED = np.iinfo(np.int32).max
try:
local_dir = os.path.dirname(__file__)
except:
local_dir = '.'
hf_hub_download(repo_id="briaai/BRIA-3.1", filename='pipeline_bria.py', local_dir=local_dir)
hf_hub_download(repo_id="briaai/BRIA-3.1", filename='transformer_bria.py', local_dir=local_dir)
hf_hub_download(repo_id="briaai/BRIA-3.1", filename='bria_utils.py', local_dir=local_dir)
hf_hub_download(repo_id="briaai/BRIA-3.1-ControlNet-Union", filename='pipeline_bria_controlnet.py', local_dir=local_dir)
hf_hub_download(repo_id="briaai/BRIA-3.1-ControlNet-Union", filename='controlnet_bria.py', local_dir=local_dir)
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
model_configs = {
'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]},
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]}
}
RATIO_CONFIGS_1024 = {
0.6666666666666666: {"width": 832, "height": 1248},
0.7432432432432432: {"width": 880, "height": 1184},
0.8028169014084507: {"width": 912, "height": 1136},
1.0: {"width": 1024, "height": 1024},
1.2456140350877194: {"width": 1136, "height": 912},
1.3454545454545455: {"width": 1184, "height": 880},
1.4339622641509433: {"width": 1216, "height": 848},
1.5: {"width": 1248, "height": 832},
1.5490196078431373: {"width": 1264, "height": 816},
1.62: {"width": 1296, "height": 800},
1.7708333333333333: {"width": 1360, "height": 768},
}
encoder = 'vitl'
model = DepthAnythingV2(**model_configs[encoder])
filepath = hf_hub_download(repo_id=f"depth-anything/Depth-Anything-V2-Large", filename=f"depth_anything_v2_vitl.pth", repo_type="model")
state_dict = torch.load(filepath, map_location="cpu")
model.load_state_dict(state_dict)
model = model.to(DEVICE).eval()
import torch
from diffusers.utils import load_image
from controlnet_bria import BriaControlNetModel, BriaMultiControlNetModel
from pipeline_bria_controlnet import BriaControlNetPipeline
import PIL.Image as Image
base_model = 'briaai/BRIA-3.1'
controlnet_model = 'briaai/BRIA-3.1-ControlNet-Union'
controlnet = BriaControlNetModel.from_pretrained(controlnet_model, torch_dtype=torch.bfloat16)
pipe = BriaControlNetPipeline.from_pretrained(base_model, controlnet=controlnet, torch_dtype=torch.bfloat16, trust_remote_code=True)
pipe = pipe.to(device="cuda", dtype=torch.bfloat16)
mode_mapping = {
"depth": 0,
"canny": 1,
"colorgrid": 2,
"recolor": 3,
"tile": 4,
"pose": 5,
}
strength_mapping = {
"depth": 1.0,
"canny": 1.0,
"colorgrid": 1.0,
"recolor": 1.0,
"tile": 1.0,
"pose": 1.0,
}
open_pose = OpenposeDetector.from_pretrained("lllyasviel/Annotators")
torch.backends.cuda.matmul.allow_tf32 = True
pipe.enable_model_cpu_offload() # for saving memory
def convert_from_image_to_cv2(img: Image) -> np.ndarray:
return cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
def convert_from_cv2_to_image(img: np.ndarray) -> Image:
return Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
def extract_depth(image):
image = np.asarray(image)
depth = model.infer_image(image[:, :, ::-1])
depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
depth = depth.astype(np.uint8)
gray_depth = Image.fromarray(depth).convert('RGB')
return gray_depth
def extract_openpose(img):
processed_image_open_pose = open_pose(img, hand_and_face=True)
processed_image_open_pose = processed_image_open_pose.resize(img.size)
return processed_image_open_pose
def extract_canny(input_image):
image = np.array(input_image)
image = cv2.Canny(image, 100, 200)
image = image[:, :, None]
image = np.concatenate([image, image, image], axis=2)
canny_image = Image.fromarray(image)
return canny_image
def convert_to_grayscale(image):
gray_image = image.convert('L').convert('RGB')
return gray_image
def tile(downscale_factor, input_image):
control_image = input_image.resize((input_image.size[0] // downscale_factor, input_image.size[1] // downscale_factor)).resize(input_image.size, Image.NEAREST)
return control_image
def resize_img(control_image):
image_ratio = control_image.width / control_image.height
ratio = min(RATIO_CONFIGS_1024.keys(), key=lambda k: abs(k - image_ratio))
to_height = RATIO_CONFIGS_1024[ratio]["height"]
to_width = RATIO_CONFIGS_1024[ratio]["width"]
resized_image = control_image.resize((to_width, to_height), resample=Image.Resampling.LANCZOS)
return resized_image
@spaces.GPU(duration=180)
def infer(image_in, prompt, inference_steps, guidance_scale, control_mode, control_strength, seed, progress=gr.Progress(track_tqdm=True)):
control_mode_num = mode_mapping[control_mode]
if image_in is not None:
image_in = resize_img(load_image(image_in))
if control_mode == "canny":
control_image = extract_canny(image_in)
elif control_mode == "depth":
control_image = extract_depth(image_in)
elif control_mode == "pose":
control_image = extract_openpose(image_in)
elif control_mode == "colorgrid":
control_image = tile(64, image_in)
elif control_mode == "recolor":
control_image = convert_to_grayscale(image_in)
elif control_mode == "tile":
control_image = tile(16, image_in)
control_image = resize_img(control_image)
width, height = control_image.size
image = pipe(
prompt,
control_image=control_image,
control_mode=control_mode_num,
width=width,
height=height,
controlnet_conditioning_scale=control_strength,
num_inference_steps=inference_steps,
guidance_scale=guidance_scale,
generator=torch.manual_seed(seed),
max_sequence_length=128,
negative_prompt="Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate"
).images[0]
torch.cuda.empty_cache()
return image, control_image, gr.update(visible=True)
css="""
#col-container{
margin: 0 auto;
max-width: 1080px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("""
# BRIA-3.1-ControlNet-Union
A unified ControlNet for BRIA-3.1 model from Bria.ai.<br />
""")
with gr.Column():
with gr.Row():
with gr.Column():
# with gr.Row(equal_height=True):
# cond_in = gr.Image(label="Upload a processed control image", sources=["upload"], type="filepath")
image_in = gr.Image(label="Extract condition from a reference image (Optional)", sources=["upload"], type="filepath")
prompt = gr.Textbox(label="Prompt", value="best quality")
with gr.Accordion("Controlnet"):
control_mode = gr.Radio(
["depth", "canny", "colorgrid", "recolor", "tile", "pose"], label="Mode", value="canny",
info="select the control mode, one for all"
)
control_strength = gr.Slider(
label="control strength",
minimum=0,
maximum=1.0,
step=0.05,
value=0.9,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=555,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Accordion("Advanced settings", open=False):
with gr.Column():
with gr.Row():
inference_steps = gr.Slider(label="Inference steps", minimum=1, maximum=50, step=1, value=50)
guidance_scale = gr.Slider(label="Guidance scale", minimum=1.0, maximum=10.0, step=0.1, value=5.0)
submit_btn = gr.Button("Submit")
with gr.Column():
result = gr.Image(label="Result")
processed_cond = gr.Image(label="Preprocessed Cond")
submit_btn.click(
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False
).then(
fn = infer,
inputs = [image_in, prompt, inference_steps, guidance_scale, control_mode, control_strength, seed],
outputs = [result, processed_cond],
show_api=False
)
demo.queue(api_open=False)
demo.launch()