Spaces:
Running
on
Zero
Running
on
Zero
import sys | |
sys.path.append('./') | |
import gradio as gr | |
import spaces | |
import os | |
import sys | |
import subprocess | |
import numpy as np | |
from PIL import Image | |
import cv2 | |
import torch | |
import random | |
os.system("pip install -e ./controlnet_aux") | |
from controlnet_aux import OpenposeDetector #, CannyDetector | |
from depth_anything_v2.dpt import DepthAnythingV2 | |
from huggingface_hub import hf_hub_download | |
from huggingface_hub import login | |
hf_token = os.environ.get("HF_TOKEN") | |
login(token=hf_token) | |
MAX_SEED = np.iinfo(np.int32).max | |
try: | |
local_dir = os.path.dirname(__file__) | |
except: | |
local_dir = '.' | |
hf_hub_download(repo_id="briaai/BRIA-3.1", filename='pipeline_bria.py', local_dir=local_dir) | |
hf_hub_download(repo_id="briaai/BRIA-3.1", filename='transformer_bria.py', local_dir=local_dir) | |
hf_hub_download(repo_id="briaai/BRIA-3.1", filename='bria_utils.py', local_dir=local_dir) | |
hf_hub_download(repo_id="briaai/BRIA-3.1-ControlNet-Union", filename='pipeline_bria_controlnet.py', local_dir=local_dir) | |
hf_hub_download(repo_id="briaai/BRIA-3.1-ControlNet-Union", filename='controlnet_bria.py', local_dir=local_dir) | |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
return seed | |
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' | |
model_configs = { | |
'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]}, | |
'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]}, | |
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]}, | |
'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]} | |
} | |
RATIO_CONFIGS_1024 = { | |
0.6666666666666666: {"width": 832, "height": 1248}, | |
0.7432432432432432: {"width": 880, "height": 1184}, | |
0.8028169014084507: {"width": 912, "height": 1136}, | |
1.0: {"width": 1024, "height": 1024}, | |
1.2456140350877194: {"width": 1136, "height": 912}, | |
1.3454545454545455: {"width": 1184, "height": 880}, | |
1.4339622641509433: {"width": 1216, "height": 848}, | |
1.5: {"width": 1248, "height": 832}, | |
1.5490196078431373: {"width": 1264, "height": 816}, | |
1.62: {"width": 1296, "height": 800}, | |
1.7708333333333333: {"width": 1360, "height": 768}, | |
} | |
encoder = 'vitl' | |
model = DepthAnythingV2(**model_configs[encoder]) | |
filepath = hf_hub_download(repo_id=f"depth-anything/Depth-Anything-V2-Large", filename=f"depth_anything_v2_vitl.pth", repo_type="model") | |
state_dict = torch.load(filepath, map_location="cpu") | |
model.load_state_dict(state_dict) | |
model = model.to(DEVICE).eval() | |
import torch | |
from diffusers.utils import load_image | |
from controlnet_bria import BriaControlNetModel, BriaMultiControlNetModel | |
from pipeline_bria_controlnet import BriaControlNetPipeline | |
import PIL.Image as Image | |
base_model = 'briaai/BRIA-3.1' | |
controlnet_model = 'briaai/BRIA-3.1-ControlNet-Union' | |
controlnet = BriaControlNetModel.from_pretrained(controlnet_model, torch_dtype=torch.bfloat16) | |
pipe = BriaControlNetPipeline.from_pretrained(base_model, controlnet=controlnet, torch_dtype=torch.bfloat16, trust_remote_code=True) | |
pipe = pipe.to(device="cuda", dtype=torch.bfloat16) | |
mode_mapping = { | |
"depth": 0, | |
"canny": 1, | |
"colorgrid": 2, | |
"recolor": 3, | |
"tile": 4, | |
"pose": 5, | |
} | |
strength_mapping = { | |
"depth": 1.0, | |
"canny": 1.0, | |
"colorgrid": 1.0, | |
"recolor": 1.0, | |
"tile": 1.0, | |
"pose": 1.0, | |
} | |
open_pose = OpenposeDetector.from_pretrained("lllyasviel/Annotators") | |
torch.backends.cuda.matmul.allow_tf32 = True | |
pipe.enable_model_cpu_offload() # for saving memory | |
def convert_from_image_to_cv2(img: Image) -> np.ndarray: | |
return cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR) | |
def convert_from_cv2_to_image(img: np.ndarray) -> Image: | |
return Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) | |
def extract_depth(image): | |
image = np.asarray(image) | |
depth = model.infer_image(image[:, :, ::-1]) | |
depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0 | |
depth = depth.astype(np.uint8) | |
gray_depth = Image.fromarray(depth).convert('RGB') | |
return gray_depth | |
def extract_openpose(img): | |
processed_image_open_pose = open_pose(img, hand_and_face=True) | |
processed_image_open_pose = processed_image_open_pose.resize(img.size) | |
return processed_image_open_pose | |
def extract_canny(input_image): | |
image = np.array(input_image) | |
image = cv2.Canny(image, 100, 200) | |
image = image[:, :, None] | |
image = np.concatenate([image, image, image], axis=2) | |
canny_image = Image.fromarray(image) | |
return canny_image | |
def convert_to_grayscale(image): | |
gray_image = image.convert('L').convert('RGB') | |
return gray_image | |
def tile(downscale_factor, input_image): | |
control_image = input_image.resize((input_image.size[0] // downscale_factor, input_image.size[1] // downscale_factor)).resize(input_image.size, Image.NEAREST) | |
return control_image | |
def resize_img(control_image): | |
image_ratio = control_image.width / control_image.height | |
ratio = min(RATIO_CONFIGS_1024.keys(), key=lambda k: abs(k - image_ratio)) | |
to_height = RATIO_CONFIGS_1024[ratio]["height"] | |
to_width = RATIO_CONFIGS_1024[ratio]["width"] | |
resized_image = control_image.resize((to_width, to_height), resample=Image.Resampling.LANCZOS) | |
return resized_image | |
def infer(image_in, prompt, inference_steps, guidance_scale, control_mode, control_strength, seed, progress=gr.Progress(track_tqdm=True)): | |
control_mode_num = mode_mapping[control_mode] | |
if image_in is not None: | |
image_in = resize_img(load_image(image_in)) | |
if control_mode == "canny": | |
control_image = extract_canny(image_in) | |
elif control_mode == "depth": | |
control_image = extract_depth(image_in) | |
elif control_mode == "pose": | |
control_image = extract_openpose(image_in) | |
elif control_mode == "colorgrid": | |
control_image = tile(64, image_in) | |
elif control_mode == "recolor": | |
control_image = convert_to_grayscale(image_in) | |
elif control_mode == "tile": | |
control_image = tile(16, image_in) | |
control_image = resize_img(control_image) | |
width, height = control_image.size | |
image = pipe( | |
prompt, | |
control_image=control_image, | |
control_mode=control_mode_num, | |
width=width, | |
height=height, | |
controlnet_conditioning_scale=control_strength, | |
num_inference_steps=inference_steps, | |
guidance_scale=guidance_scale, | |
generator=torch.manual_seed(seed), | |
max_sequence_length=128, | |
negative_prompt="Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate" | |
).images[0] | |
torch.cuda.empty_cache() | |
return image, control_image, gr.update(visible=True) | |
css=""" | |
#col-container{ | |
margin: 0 auto; | |
max-width: 1080px; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(""" | |
# BRIA-3.1-ControlNet-Union | |
A unified ControlNet for BRIA-3.1 model from Bria.ai.<br /> | |
""") | |
with gr.Column(): | |
with gr.Row(): | |
with gr.Column(): | |
# with gr.Row(equal_height=True): | |
# cond_in = gr.Image(label="Upload a processed control image", sources=["upload"], type="filepath") | |
image_in = gr.Image(label="Extract condition from a reference image (Optional)", sources=["upload"], type="filepath") | |
prompt = gr.Textbox(label="Prompt", value="best quality") | |
with gr.Accordion("Controlnet"): | |
control_mode = gr.Radio( | |
["depth", "canny", "colorgrid", "recolor", "tile", "pose"], label="Mode", value="canny", | |
info="select the control mode, one for all" | |
) | |
control_strength = gr.Slider( | |
label="control strength", | |
minimum=0, | |
maximum=1.0, | |
step=0.05, | |
value=0.9, | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=555, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Accordion("Advanced settings", open=False): | |
with gr.Column(): | |
with gr.Row(): | |
inference_steps = gr.Slider(label="Inference steps", minimum=1, maximum=50, step=1, value=50) | |
guidance_scale = gr.Slider(label="Guidance scale", minimum=1.0, maximum=10.0, step=0.1, value=5.0) | |
submit_btn = gr.Button("Submit") | |
with gr.Column(): | |
result = gr.Image(label="Result") | |
processed_cond = gr.Image(label="Preprocessed Cond") | |
submit_btn.click( | |
fn=randomize_seed_fn, | |
inputs=[seed, randomize_seed], | |
outputs=seed, | |
queue=False, | |
api_name=False | |
).then( | |
fn = infer, | |
inputs = [image_in, prompt, inference_steps, guidance_scale, control_mode, control_strength, seed], | |
outputs = [result, processed_cond], | |
show_api=False | |
) | |
demo.queue(api_open=False) | |
demo.launch() |