File size: 11,438 Bytes
56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 08a09be 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 08a09be 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 |
# Enhancement agents for card revision and improvement
import json
import asyncio
from typing import List
from datetime import datetime
from openai import AsyncOpenAI
from ankigen_core.logging import logger
from ankigen_core.models import Card, CardFront, CardBack
from .base import BaseAgentWrapper
from .config import get_config_manager
from .judges import JudgeDecision
class RevisionAgent(BaseAgentWrapper):
"""Agent for revising cards based on judge feedback"""
def __init__(self, openai_client: AsyncOpenAI):
config_manager = get_config_manager()
base_config = config_manager.get_agent_config("revision_agent")
if not base_config:
raise ValueError(
"revision_agent configuration not found - agent system not properly initialized"
)
super().__init__(base_config, openai_client)
async def revise_card(
self, card: Card, judge_decisions: List[JudgeDecision], max_iterations: int = 3
) -> Card:
"""Revise a card based on judge feedback"""
datetime.now()
try:
# Collect all feedback and improvements
all_feedback = []
all_improvements = []
for decision in judge_decisions:
if not decision.approved:
all_feedback.append(f"{decision.judge_name}: {decision.feedback}")
all_improvements.extend(decision.improvements)
if not all_feedback:
# No revisions needed
return card
# Build revision prompt
user_input = self._build_revision_prompt(
card, all_feedback, all_improvements
)
# Execute revision
response, usage = await self.execute(user_input)
# Parse revised card
revised_card = self._parse_revised_card(response, card)
# Record successful execution
logger.info(
f"RevisionAgent successfully revised card: {card.front.question[:50]}..."
)
return revised_card
except Exception as e:
logger.error(f"RevisionAgent failed to revise card: {e}")
return card # Return original card on failure
def _build_revision_prompt(
self, card: Card, feedback: List[str], improvements: List[str]
) -> str:
"""Build the revision prompt"""
feedback_str = "\n".join([f"- {fb}" for fb in feedback])
improvements_str = "\n".join([f"- {imp}" for imp in improvements])
return f"""Revise this flashcard based on the provided feedback and improvement suggestions:
Original Card:
Question: {card.front.question}
Answer: {card.back.answer}
Explanation: {card.back.explanation}
Example: {card.back.example}
Type: {card.card_type}
Metadata: {json.dumps(card.metadata, indent=2)}
Judge Feedback:
{feedback_str}
Specific Improvements Needed:
{improvements_str}
Instructions:
1. Address each piece of feedback specifically
2. Implement the suggested improvements
3. Maintain the educational intent and core content
4. Preserve correct information while fixing issues
5. Improve clarity, accuracy, and pedagogical value
Return the revised card as JSON:
{{
"card_type": "{card.card_type}",
"front": {{
"question": "Revised, improved question"
}},
"back": {{
"answer": "Revised, improved answer",
"explanation": "Revised, improved explanation",
"example": "Revised, improved example"
}},
"metadata": {{
// Enhanced metadata with improvements
}},
"revision_notes": "Summary of changes made based on feedback"
}}"""
def _parse_revised_card(self, response: str, original_card: Card) -> Card:
"""Parse the revised card response"""
try:
if isinstance(response, str):
data = json.loads(response)
else:
data = response
# Create revised card
revised_card = Card(
card_type=data.get("card_type", original_card.card_type),
front=CardFront(question=data["front"]["question"]),
back=CardBack(
answer=data["back"]["answer"],
explanation=data["back"].get("explanation", ""),
example=data["back"].get("example", ""),
),
metadata=data.get("metadata", original_card.metadata),
)
# Add revision tracking to metadata
if revised_card.metadata is None:
revised_card.metadata = {}
revised_card.metadata["revision_notes"] = data.get(
"revision_notes", "Revised based on judge feedback"
)
revised_card.metadata["last_revised"] = datetime.now().isoformat()
return revised_card
except Exception as e:
logger.error(f"Failed to parse revised card: {e}")
return original_card
class EnhancementAgent(BaseAgentWrapper):
"""Agent for enhancing cards with additional content and metadata"""
def __init__(self, openai_client: AsyncOpenAI):
config_manager = get_config_manager()
base_config = config_manager.get_agent_config("enhancement_agent")
if not base_config:
raise ValueError(
"enhancement_agent configuration not found - agent system not properly initialized"
)
super().__init__(base_config, openai_client)
async def enhance_card(
self, card: Card, enhancement_targets: List[str] = None
) -> Card:
"""Enhance a card with additional content and metadata"""
datetime.now()
try:
# Default enhancement targets if none specified
if not enhancement_targets:
enhancement_targets = [
"explanation",
"example",
"metadata",
"learning_outcomes",
"prerequisites",
"related_concepts",
]
user_input = self._build_enhancement_prompt(card, enhancement_targets)
# Execute enhancement
response, usage = await self.execute(user_input)
# Parse enhanced card
enhanced_card = self._parse_enhanced_card(response, card)
# Record successful execution
logger.info(
f"EnhancementAgent successfully enhanced card: {card.front.question[:50]}..."
)
return enhanced_card
except Exception as e:
logger.error(f"EnhancementAgent failed to enhance card: {e}")
return card # Return original card on failure
def _build_enhancement_prompt(
self, card: Card, enhancement_targets: List[str]
) -> str:
"""Build the enhancement prompt"""
targets_str = ", ".join(enhancement_targets)
return f"""Enhance this flashcard by adding missing elements and enriching the content:
Current Card:
Question: {card.front.question}
Answer: {card.back.answer}
Explanation: {card.back.explanation}
Example: {card.back.example}
Type: {card.card_type}
Current Metadata: {json.dumps(card.metadata, indent=2)}
Enhancement Targets: {targets_str}
Enhancement Instructions:
1. Add comprehensive explanations with reasoning
2. Provide relevant, practical examples
3. Enrich metadata with appropriate tags and categorization
4. Add learning outcomes and prerequisites if missing
5. Include connections to related concepts
6. Ensure enhancements add value without overwhelming the learner
Return the enhanced card as JSON:
{{
"card_type": "{card.card_type}",
"front": {{
"question": "Enhanced question (if improvements needed)"
}},
"back": {{
"answer": "Enhanced answer",
"explanation": "Comprehensive explanation with reasoning and context",
"example": "Relevant, practical example with details"
}},
"metadata": {{
"topic": "specific topic",
"subject": "subject area",
"difficulty": "beginner|intermediate|advanced",
"tags": ["comprehensive", "tag", "list"],
"learning_outcomes": ["specific learning outcome 1", "outcome 2"],
"prerequisites": ["prerequisite 1", "prerequisite 2"],
"related_concepts": ["concept 1", "concept 2"],
"estimated_time": "time in minutes",
"common_mistakes": ["mistake 1", "mistake 2"],
"memory_aids": ["mnemonic or memory aid"],
"real_world_applications": ["application 1", "application 2"]
}},
"enhancement_notes": "Summary of enhancements made"
}}"""
def _parse_enhanced_card(self, response: str, original_card: Card) -> Card:
"""Parse the enhanced card response"""
try:
if isinstance(response, str):
data = json.loads(response)
else:
data = response
# Create enhanced card
enhanced_card = Card(
card_type=data.get("card_type", original_card.card_type),
front=CardFront(question=data["front"]["question"]),
back=CardBack(
answer=data["back"]["answer"],
explanation=data["back"].get(
"explanation", original_card.back.explanation
),
example=data["back"].get("example", original_card.back.example),
),
metadata=data.get("metadata", original_card.metadata),
)
# Add enhancement tracking to metadata
if enhanced_card.metadata is None:
enhanced_card.metadata = {}
enhanced_card.metadata["enhancement_notes"] = data.get(
"enhancement_notes", "Enhanced with additional content"
)
enhanced_card.metadata["last_enhanced"] = datetime.now().isoformat()
return enhanced_card
except Exception as e:
logger.error(f"Failed to parse enhanced card: {e}")
return original_card
async def enhance_card_batch(
self, cards: List[Card], enhancement_targets: List[str] = None
) -> List[Card]:
"""Enhance multiple cards in batch"""
datetime.now()
try:
enhanced_cards = []
# Process cards in parallel for efficiency
tasks = [self.enhance_card(card, enhancement_targets) for card in cards]
results = await asyncio.gather(*tasks, return_exceptions=True)
for card, result in zip(cards, results):
if isinstance(result, Exception):
logger.warning(f"Enhancement failed for card: {result}")
enhanced_cards.append(card) # Keep original
else:
enhanced_cards.append(result)
# Record batch execution
successful_enhancements = len(
[r for r in results if not isinstance(r, Exception)]
)
logger.info(
f"EnhancementAgent batch complete: {successful_enhancements}/{len(cards)} cards enhanced"
)
return enhanced_cards
except Exception as e:
logger.error(f"EnhancementAgent batch failed: {e}")
return cards # Return original cards on failure
|