File size: 27,290 Bytes
56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 08a09be 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 08a09be 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 08a09be 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 08a09be 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 08a09be 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 |
# Specialized judge agents for card quality assessment
import json
import asyncio
from typing import List, Dict, Any, Tuple, Optional
from datetime import datetime
from dataclasses import dataclass
from openai import AsyncOpenAI
from ankigen_core.logging import logger
from ankigen_core.models import Card
from .base import BaseAgentWrapper, AgentConfig
from .config import get_config_manager
from .schemas import JudgeDecisionSchema
@dataclass
class JudgeDecision:
"""Decision from a judge agent"""
approved: bool
score: float
feedback: str
judge_name: str
improvements: Optional[List[str]] = None
metadata: Optional[Dict[str, Any]] = None
def __post_init__(self):
if self.metadata is None:
self.metadata = {}
if self.improvements is None:
self.improvements = []
class ContentAccuracyJudge(BaseAgentWrapper):
"""Judge for factual accuracy and content correctness"""
def __init__(self, openai_client: AsyncOpenAI):
config_manager = get_config_manager()
base_config = config_manager.get_agent_config("content_accuracy_judge")
if not base_config:
raise ValueError(
"content_accuracy_judge configuration not found - agent system not properly initialized"
)
# Enable structured output for judge decisions
base_config.response_format = JudgeDecisionSchema
super().__init__(base_config, openai_client)
async def judge_card(
self, card: Card, context: Optional[Dict[str, Any]] = None
) -> JudgeDecision:
"""Judge a card for content accuracy"""
try:
user_input = f"""Evaluate this flashcard for factual accuracy:
Front: {card.front.question}
Back: {card.back.answer}
Assess:
1. Factual correctness
2. Completeness of information
3. Clarity and precision
4. Potential misconceptions
Provide a score (0-1) and detailed feedback."""
response, usage = await self.execute(user_input)
# Log usage information
if usage and usage.get("total_tokens", 0) > 0:
logger.info(
f"π° Token Usage: {usage['total_tokens']} tokens (Input: {usage['input_tokens']}, Output: {usage['output_tokens']})"
)
return self._parse_judge_response(response, "ContentAccuracyJudge")
except Exception as e:
logger.error(f"Content accuracy judgment failed: {e}")
raise
def _parse_judge_response(
self, response: Dict[str, Any], judge_name: str
) -> JudgeDecision:
"""Parse the judge response into a JudgeDecision"""
decision_data = json.loads(response) if isinstance(response, str) else response
decision = self._parse_decision(decision_data)
# Enhanced logging for judge decisions
logger.info(f"π― {judge_name.upper()} DECISION:")
logger.info(" Card: [Card content]")
logger.info(f" β
Approved: {decision.approved}")
logger.info(f" π Score: {decision.score:.2f}")
logger.info(f" π Feedback: {decision.feedback}")
if decision.metadata.get("factual_errors"):
logger.info(f" β Factual Errors: {decision.metadata['factual_errors']}")
if decision.metadata.get("terminology_issues"):
logger.info(
f" β οΈ Terminology Issues: {decision.metadata['terminology_issues']}"
)
if decision.improvements:
logger.info(f" π§ Suggested Improvements: {decision.improvements}")
logger.info(
f" π― Judge Confidence: {decision.metadata.get('confidence', 'N/A')}"
)
return decision
def _parse_decision(self, decision_data: Dict[str, Any]) -> JudgeDecision:
"""Parse the judge response into a JudgeDecision"""
return JudgeDecision(
approved=decision_data.get("approved", True),
score=decision_data.get("accuracy_score", 0.5),
feedback=decision_data.get("detailed_feedback", "No feedback provided"),
improvements=decision_data.get("suggestions", []),
judge_name=self.config.name,
metadata={
"factual_errors": decision_data.get("factual_errors", []),
"terminology_issues": decision_data.get("terminology_issues", []),
"misconceptions": decision_data.get("misconceptions", []),
"confidence": decision_data.get("confidence", 0.5),
},
)
class PedagogicalJudge(BaseAgentWrapper):
"""Judge for educational effectiveness and pedagogical principles"""
def __init__(self, openai_client: AsyncOpenAI):
config_manager = get_config_manager()
base_config = config_manager.get_agent_config("pedagogical_judge")
if not base_config:
base_config = AgentConfig(
name="pedagogical_judge",
instructions="""You are an educational assessment specialist.
Evaluate flashcards for pedagogical effectiveness, learning objectives,
cognitive levels, and educational best practices.""",
model="gpt-4.1",
temperature=0.4,
)
super().__init__(base_config, openai_client)
async def judge_card(self, card: Card) -> JudgeDecision:
"""Judge a single card for pedagogical effectiveness"""
datetime.now()
try:
user_input = self._build_judgment_prompt(card)
response, usage = await self.execute(user_input)
decision_data = (
json.loads(response) if isinstance(response, str) else response
)
decision = self._parse_decision(decision_data)
# Enhanced logging for pedagogical judge decisions
logger.info(f"π {self.config.name.upper()} DECISION:")
logger.info(f" Card: {card.front.question[:80]}...")
logger.info(f" β
Approved: {decision.approved}")
logger.info(f" π Score: {decision.score:.2f}")
logger.info(f" π Feedback: {decision.feedback}")
if decision.metadata and decision.metadata.get("cognitive_level"):
logger.info(
f" π§ Cognitive Level: {decision.metadata['cognitive_level']}"
)
if decision.metadata and decision.metadata.get("pedagogical_issues"):
logger.info(
f" β οΈ Pedagogical Issues: {decision.metadata['pedagogical_issues']}"
)
if decision.improvements:
logger.info(f" π§ Suggested Improvements: {decision.improvements}")
return decision
except Exception as e:
logger.error(f"PedagogicalJudge failed: {e}")
return JudgeDecision(
approved=True,
score=0.5,
feedback=f"Judgment failed: {str(e)}",
judge_name=self.config.name,
)
def _build_judgment_prompt(self, card: Card) -> str:
"""Build the judgment prompt for pedagogical effectiveness"""
return f"""Evaluate this flashcard for pedagogical effectiveness:
Card:
Question: {card.front.question}
Answer: {card.back.answer}
Explanation: {card.back.explanation}
Example: {card.back.example}
Difficulty: {card.metadata.get('difficulty', 'Unknown')}
Evaluate based on:
1. Learning Objectives: Clear, measurable learning goals?
2. Bloom's Taxonomy: Appropriate cognitive level?
3. Cognitive Load: Manageable information load?
4. Motivation: Engaging and relevant content?
5. Assessment: Valid testing of understanding vs memorization?
Return your assessment as JSON:
{{
"approved": true/false,
"pedagogical_score": 0.0-1.0,
"cognitive_level": "remember|understand|apply|analyze|evaluate|create",
"cognitive_load": "low|medium|high",
"learning_objectives": ["objective1", "objective2"],
"engagement_factors": ["factor1", "factor2"],
"pedagogical_issues": ["issue1", "issue2"],
"improvement_suggestions": ["suggestion1", "suggestion2"],
"detailed_feedback": "Comprehensive pedagogical assessment"
}}"""
def _parse_decision(self, decision_data: Dict[str, Any]) -> JudgeDecision:
"""Parse the judge response into a JudgeDecision"""
return JudgeDecision(
approved=decision_data.get("approved", True),
score=decision_data.get("pedagogical_score", 0.5),
feedback=decision_data.get("detailed_feedback", "No feedback provided"),
improvements=decision_data.get("improvement_suggestions", []),
judge_name=self.config.name,
metadata={
"cognitive_level": decision_data.get("cognitive_level", "unknown"),
"cognitive_load": decision_data.get("cognitive_load", "medium"),
"learning_objectives": decision_data.get("learning_objectives", []),
"engagement_factors": decision_data.get("engagement_factors", []),
"pedagogical_issues": decision_data.get("pedagogical_issues", []),
},
)
class ClarityJudge(BaseAgentWrapper):
"""Judge for clarity, readability, and communication effectiveness"""
def __init__(self, openai_client: AsyncOpenAI):
config_manager = get_config_manager()
base_config = config_manager.get_agent_config("clarity_judge")
if not base_config:
base_config = AgentConfig(
name="clarity_judge",
instructions="""You are a communication and clarity specialist.
Ensure flashcards are clear, unambiguous, well-written, and accessible
to the target audience.""",
model="gpt-4.1-mini",
temperature=0.3,
)
super().__init__(base_config, openai_client)
async def judge_card(self, card: Card) -> JudgeDecision:
"""Judge a single card for clarity and communication"""
datetime.now()
try:
user_input = self._build_judgment_prompt(card)
response, usage = await self.execute(user_input)
decision_data = (
json.loads(response) if isinstance(response, str) else response
)
decision = self._parse_decision(decision_data)
# Enhanced logging for clarity judge decisions
logger.info(f"β¨ {self.config.name.upper()} DECISION:")
logger.info(f" Card: {card.front.question[:80]}...")
logger.info(f" β
Approved: {decision.approved}")
logger.info(f" π Score: {decision.score:.2f}")
logger.info(f" π Feedback: {decision.feedback}")
if decision.metadata and decision.metadata.get("readability_level"):
logger.info(
f" π Readability: {decision.metadata['readability_level']}"
)
if decision.metadata and decision.metadata.get("ambiguities"):
logger.info(f" β Ambiguities: {decision.metadata['ambiguities']}")
if decision.improvements:
logger.info(f" π§ Suggested Improvements: {decision.improvements}")
return decision
except Exception as e:
logger.error(f"ClarityJudge failed: {e}")
return JudgeDecision(
approved=True,
score=0.5,
feedback=f"Judgment failed: {str(e)}",
judge_name=self.config.name,
)
def _build_judgment_prompt(self, card: Card) -> str:
"""Build the judgment prompt for clarity assessment"""
return f"""Evaluate this flashcard for clarity and communication effectiveness:
Card:
Question: {card.front.question}
Answer: {card.back.answer}
Explanation: {card.back.explanation}
Example: {card.back.example}
Evaluate for:
1. Question Clarity: Is the question clear and unambiguous?
2. Answer Completeness: Is the answer complete and coherent?
3. Language Level: Appropriate for target audience?
4. Readability: Easy to read and understand?
5. Structure: Well-organized and logical flow?
Return your assessment as JSON:
{{
"approved": true/false,
"clarity_score": 0.0-1.0,
"question_clarity": 0.0-1.0,
"answer_completeness": 0.0-1.0,
"readability_level": "elementary|middle|high|college",
"ambiguities": ["ambiguity1", "ambiguity2"],
"clarity_issues": ["issue1", "issue2"],
"improvement_suggestions": ["suggestion1", "suggestion2"],
"detailed_feedback": "Comprehensive clarity assessment"
}}"""
def _parse_decision(self, decision_data: Dict[str, Any]) -> JudgeDecision:
"""Parse the judge response into a JudgeDecision"""
return JudgeDecision(
approved=decision_data.get("approved", True),
score=decision_data.get("clarity_score", 0.5),
feedback=decision_data.get("detailed_feedback", "No feedback provided"),
improvements=decision_data.get("improvement_suggestions", []),
judge_name=self.config.name,
metadata={
"question_clarity": decision_data.get("question_clarity", 0.5),
"answer_completeness": decision_data.get("answer_completeness", 0.5),
"readability_level": decision_data.get("readability_level", "unknown"),
"ambiguities": decision_data.get("ambiguities", []),
"clarity_issues": decision_data.get("clarity_issues", []),
},
)
class TechnicalJudge(BaseAgentWrapper):
"""Judge for technical accuracy in programming and technical content"""
def __init__(self, openai_client: AsyncOpenAI):
config_manager = get_config_manager()
base_config = config_manager.get_agent_config("technical_judge")
if not base_config:
base_config = AgentConfig(
name="technical_judge",
instructions="""You are a technical accuracy specialist for programming and technical content.
Verify code syntax, best practices, security considerations, and technical correctness.""",
model="gpt-4.1",
temperature=0.2,
)
super().__init__(base_config, openai_client)
async def judge_card(self, card: Card) -> JudgeDecision:
"""Judge a single card for technical accuracy"""
datetime.now()
try:
# Only judge technical content
if not self._is_technical_content(card):
return JudgeDecision(
approved=True,
score=1.0,
feedback="Non-technical content - no technical review needed",
judge_name=self.config.name,
)
user_input = self._build_judgment_prompt(card)
response, usage = await self.execute(user_input)
decision_data = (
json.loads(response) if isinstance(response, str) else response
)
decision = self._parse_decision(decision_data)
return decision
except Exception as e:
logger.error(f"TechnicalJudge failed: {e}")
return JudgeDecision(
approved=True,
score=0.5,
feedback=f"Technical judgment failed: {str(e)}",
judge_name=self.config.name,
)
def _is_technical_content(self, card: Card) -> bool:
"""Determine if card contains technical content requiring technical review"""
technical_keywords = [
"code",
"programming",
"algorithm",
"function",
"class",
"method",
"syntax",
"API",
"database",
"SQL",
"python",
"javascript",
"java",
"framework",
"library",
"development",
"software",
"technical",
]
content = (
f"{card.front.question} {card.back.answer} {card.back.explanation}".lower()
)
subject = card.metadata.get("subject", "").lower()
return any(
keyword in content or keyword in subject for keyword in technical_keywords
)
def _build_judgment_prompt(self, card: Card) -> str:
"""Build the judgment prompt for technical accuracy"""
return f"""Evaluate this technical flashcard for accuracy and best practices:
Card:
Question: {card.front.question}
Answer: {card.back.answer}
Explanation: {card.back.explanation}
Example: {card.back.example}
Subject: {card.metadata.get('subject', 'Unknown')}
Evaluate for:
1. Code Syntax: Is any code syntactically correct?
2. Best Practices: Does it follow established best practices?
3. Security: Are there security considerations addressed?
4. Performance: Are performance implications mentioned where relevant?
5. Tool Accuracy: Are tool/framework references accurate?
Return your assessment as JSON:
{{
"approved": true/false,
"technical_score": 0.0-1.0,
"syntax_errors": ["error1", "error2"],
"best_practice_violations": ["violation1", "violation2"],
"security_issues": ["issue1", "issue2"],
"performance_concerns": ["concern1", "concern2"],
"tool_inaccuracies": ["inaccuracy1", "inaccuracy2"],
"improvement_suggestions": ["suggestion1", "suggestion2"],
"detailed_feedback": "Comprehensive technical assessment"
}}"""
def _parse_decision(self, decision_data: Dict[str, Any]) -> JudgeDecision:
"""Parse the judge response into a JudgeDecision"""
return JudgeDecision(
approved=decision_data.get("approved", True),
score=decision_data.get("technical_score", 0.5),
feedback=decision_data.get("detailed_feedback", "No feedback provided"),
improvements=decision_data.get("improvement_suggestions", []),
judge_name=self.config.name,
metadata={
"syntax_errors": decision_data.get("syntax_errors", []),
"best_practice_violations": decision_data.get(
"best_practice_violations", []
),
"security_issues": decision_data.get("security_issues", []),
"performance_concerns": decision_data.get("performance_concerns", []),
"tool_inaccuracies": decision_data.get("tool_inaccuracies", []),
},
)
class CompletenessJudge(BaseAgentWrapper):
"""Judge for completeness and quality standards"""
def __init__(self, openai_client: AsyncOpenAI):
config_manager = get_config_manager()
base_config = config_manager.get_agent_config("completeness_judge")
if not base_config:
base_config = AgentConfig(
name="completeness_judge",
instructions="""You are a completeness and quality assurance specialist.
Ensure flashcards meet all requirements, have complete information,
and maintain consistent quality standards.""",
model="gpt-4.1-mini",
temperature=0.3,
)
super().__init__(base_config, openai_client)
async def judge_card(self, card: Card) -> JudgeDecision:
"""Judge a single card for completeness"""
datetime.now()
try:
user_input = self._build_judgment_prompt(card)
response, usage = await self.execute(user_input)
decision_data = (
json.loads(response) if isinstance(response, str) else response
)
decision = self._parse_decision(decision_data)
return decision
except Exception as e:
logger.error(f"CompletenessJudge failed: {e}")
return JudgeDecision(
approved=True,
score=0.5,
feedback=f"Completeness judgment failed: {str(e)}",
judge_name=self.config.name,
)
def _build_judgment_prompt(self, card: Card) -> str:
"""Build the judgment prompt for completeness assessment"""
return f"""Evaluate this flashcard for completeness and quality standards:
Card:
Question: {card.front.question}
Answer: {card.back.answer}
Explanation: {card.back.explanation}
Example: {card.back.example}
Type: {card.card_type}
Metadata: {json.dumps(card.metadata, indent=2)}
Check for:
1. Required Fields: All necessary fields present and filled?
2. Metadata Completeness: Appropriate tags, categorization, difficulty?
3. Content Completeness: Answer, explanation, example present and sufficient?
4. Quality Standards: Consistent formatting and professional quality?
5. Example Relevance: Examples relevant and helpful?
Return your assessment as JSON:
{{
"approved": true/false,
"completeness_score": 0.0-1.0,
"missing_fields": ["field1", "field2"],
"incomplete_sections": ["section1", "section2"],
"metadata_issues": ["issue1", "issue2"],
"quality_concerns": ["concern1", "concern2"],
"improvement_suggestions": ["suggestion1", "suggestion2"],
"detailed_feedback": "Comprehensive completeness assessment"
}}"""
def _parse_decision(self, decision_data: Dict[str, Any]) -> JudgeDecision:
"""Parse the judge response into a JudgeDecision"""
return JudgeDecision(
approved=decision_data.get("approved", True),
score=decision_data.get("completeness_score", 0.5),
feedback=decision_data.get("detailed_feedback", "No feedback provided"),
improvements=decision_data.get("improvement_suggestions", []),
judge_name=self.config.name,
metadata={
"missing_fields": decision_data.get("missing_fields", []),
"incomplete_sections": decision_data.get("incomplete_sections", []),
"metadata_issues": decision_data.get("metadata_issues", []),
"quality_concerns": decision_data.get("quality_concerns", []),
},
)
class JudgeCoordinator(BaseAgentWrapper):
"""Coordinates multiple judges and synthesizes their decisions"""
def __init__(self, openai_client: AsyncOpenAI):
config_manager = get_config_manager()
base_config = config_manager.get_agent_config("judge_coordinator")
if not base_config:
base_config = AgentConfig(
name="judge_coordinator",
instructions="""You are the quality assurance coordinator.
Orchestrate the judging process and synthesize feedback from specialist judges.
Balance speed with thoroughness in quality assessment.""",
model="gpt-4.1-mini",
temperature=0.3,
)
super().__init__(base_config, openai_client)
# Initialize specialist judges
self.content_accuracy = ContentAccuracyJudge(openai_client)
self.pedagogical = PedagogicalJudge(openai_client)
self.clarity = ClarityJudge(openai_client)
self.technical = TechnicalJudge(openai_client)
self.completeness = CompletenessJudge(openai_client)
async def coordinate_judgment(
self,
cards: List[Card],
enable_parallel: bool = True,
min_consensus: float = 0.6,
) -> List[Tuple[Card, List[JudgeDecision], bool]]:
"""Coordinate judgment of multiple cards"""
datetime.now()
try:
results = []
if enable_parallel:
# Process all cards in parallel
tasks = [self._judge_single_card(card, min_consensus) for card in cards]
card_results = await asyncio.gather(*tasks, return_exceptions=True)
for card, result in zip(cards, card_results):
if isinstance(result, Exception):
logger.error(f"Parallel judgment failed for card: {result}")
results.append((card, [], False))
else:
results.append(result)
else:
# Process cards sequentially
for card in cards:
try:
result = await self._judge_single_card(card, min_consensus)
results.append(result)
except Exception as e:
logger.error(f"Sequential judgment failed for card: {e}")
results.append((card, [], False))
# Calculate summary statistics
total_cards = len(cards)
approved_cards = len([result for _, _, approved in results if approved])
logger.info(
f"Judge coordination complete: {approved_cards}/{total_cards} cards approved"
)
return results
except Exception as e:
logger.error(f"Judge coordination failed: {e}")
raise
async def _judge_single_card(
self, card: Card, min_consensus: float
) -> Tuple[Card, List[JudgeDecision], bool]:
"""Judge a single card with all relevant judges"""
# Determine which judges to use based on card content
judges = [
self.content_accuracy,
self.pedagogical,
self.clarity,
self.completeness,
]
# Add technical judge only for technical content
if self.technical._is_technical_content(card):
judges.append(self.technical)
# Execute all judges in parallel
judge_tasks = [judge.judge_card(card) for judge in judges]
decisions = await asyncio.gather(*judge_tasks, return_exceptions=True)
# Filter out failed decisions
valid_decisions = []
for decision in decisions:
if isinstance(decision, JudgeDecision):
valid_decisions.append(decision)
else:
logger.warning(f"Judge decision failed: {decision}")
# Calculate consensus
if not valid_decisions:
return (card, [], False)
approval_votes = len([d for d in valid_decisions if d.approved])
consensus_score = approval_votes / len(valid_decisions)
# Determine final approval based on consensus
final_approval = consensus_score >= min_consensus
# Enhanced logging for judge coordination
logger.info("ποΈ JUDGE COORDINATION RESULT:")
logger.info(f" Card: {card.front.question[:80]}...")
logger.info(f" π₯ Judges Consulted: {len(valid_decisions)}")
logger.info(f" β
Approval Votes: {approval_votes}/{len(valid_decisions)}")
logger.info(
f" π Consensus Score: {consensus_score:.2f} (min: {min_consensus:.2f})"
)
logger.info(
f" π Final Decision: {'APPROVED' if final_approval else 'REJECTED'}"
)
if not final_approval:
logger.info(" π Rejection Reasons:")
for decision in valid_decisions:
if not decision.approved:
logger.info(
f" β’ {decision.judge_name}: {decision.feedback[:100]}..."
)
return (card, valid_decisions, final_approval)
|