File size: 15,788 Bytes
d09f6aa 75775c4 d09f6aa d6f5eba d09f6aa aee77fd d09f6aa aee77fd 75775c4 aee77fd 75775c4 a6cf941 d09f6aa a6cf941 d09f6aa a6cf941 d09f6aa a6cf941 d6f5eba d09f6aa d6f5eba d09f6aa d6f5eba d09f6aa d6f5eba d09f6aa d6f5eba d09f6aa 75775c4 d09f6aa d6f5eba d09f6aa d6f5eba d09f6aa d6f5eba d09f6aa d6f5eba d09f6aa d6f5eba d09f6aa d6f5eba a6cf941 d09f6aa d6f5eba a6cf941 d09f6aa d6f5eba d09f6aa a6cf941 75775c4 d09f6aa aee77fd d09f6aa 75775c4 d09f6aa 75775c4 aee77fd d09f6aa aee77fd d09f6aa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 |
# Standard library imports
import os
from pathlib import Path # Potentially for favicon_path
from functools import partial # Moved to utils
import gradio as gr
import pandas as pd
from ankigen_core.utils import (
get_logger,
ResponseCache,
) # fetch_webpage_text is used by card_generator
from ankigen_core.llm_interface import (
OpenAIClientManager,
) # structured_output_completion is internal to core modules
from ankigen_core.card_generator import (
orchestrate_card_generation,
AVAILABLE_MODELS,
) # GENERATION_MODES is internal to card_generator
from ankigen_core.learning_path import analyze_learning_path
from ankigen_core.exporters import (
export_csv,
export_deck,
) # Anki models (BASIC_MODEL, CLOZE_MODEL) are internal to exporters
from ankigen_core.ui_logic import update_mode_visibility, use_selected_subjects
# --- Initialization ---
logger = get_logger()
response_cache = ResponseCache() # Initialize cache
client_manager = OpenAIClientManager() # Initialize client manager
js_storage = """
async () => {
const loadDecks = () => {
const decks = localStorage.getItem('ankigen_decks');
return decks ? JSON.parse(decks) : [];
};
const saveDecks = (decks) => {
localStorage.setItem('ankigen_decks', JSON.stringify(decks));
};
window.loadStoredDecks = loadDecks;
window.saveStoredDecks = saveDecks;
return loadDecks();
}
"""
custom_theme = gr.themes.Soft().set(
body_background_fill="*background_fill_secondary",
block_background_fill="*background_fill_primary",
block_border_width="0",
button_primary_background_fill="*primary_500",
button_primary_text_color="white",
)
# --- Example Data for Initialization ---
example_data = pd.DataFrame(
[
[
"1.1",
"SQL Basics",
"basic",
"What is a SELECT statement used for?",
"Retrieving data from one or more database tables.",
"The SELECT statement is the most common command in SQL...",
"```sql\nSELECT column1, column2 FROM my_table WHERE condition;\n```",
["Understanding of database tables"],
["Retrieve specific data"],
["β SELECT * is always efficient (Reality: Can be slow for large tables)"],
"beginner",
],
[
"2.1",
"Python Fundamentals",
"cloze",
"The primary keyword to define a function in Python is {{c1::def}}.",
"def",
"Functions are defined using the `def` keyword...",
r"""```python
def greet(name):
print(f"Hello, {name}!")
```""",
["Basic programming concepts"],
["Define reusable blocks of code"],
["β Forgetting the colon (:) after the definition"],
"beginner",
],
],
columns=[
"Index",
"Topic",
"Card_Type",
"Question",
"Answer",
"Explanation",
"Example",
"Prerequisites",
"Learning_Outcomes",
"Common_Misconceptions",
"Difficulty",
],
)
# -------------------------------------
def create_ankigen_interface():
logger.info("Creating AnkiGen Gradio interface...")
with gr.Blocks(
theme=custom_theme,
title="AnkiGen",
css="""
#footer {display:none !important}
.tall-dataframe {min-height: 500px !important}
.contain {max-width: 100% !important; margin: auto;}
.output-cards {border-radius: 8px; box-shadow: 0 4px 6px -1px rgba(0,0,0,0.1);}
.hint-text {font-size: 0.9em; color: #666; margin-top: 4px;}
.export-group > .gradio-group { margin-bottom: 0 !important; padding-bottom: 5px !important; }
""",
js=js_storage,
) as ankigen:
with gr.Column(elem_classes="contain"):
gr.Markdown("# π AnkiGen - Advanced Anki Card Generator")
gr.Markdown("#### Generate comprehensive Anki flashcards using AI.")
with gr.Accordion("Configuration Settings", open=True):
with gr.Row():
with gr.Column(scale=1):
generation_mode = gr.Radio(
choices=[
("Single Subject", "subject"),
("Learning Path", "path"),
("From Text", "text"),
("From Web", "web"),
],
value="subject",
label="Generation Mode",
info="Choose how you want to generate content",
)
with gr.Group() as subject_mode:
subject = gr.Textbox(
label="Subject",
placeholder="e.g., 'Basic SQL Concepts'",
)
with gr.Group(visible=False) as path_mode:
description = gr.Textbox(
label="Learning Goal",
placeholder="Paste a job description...",
lines=5,
)
analyze_button = gr.Button(
"Analyze & Break Down", variant="secondary"
)
with gr.Group(visible=False) as text_mode:
source_text = gr.Textbox(
label="Source Text",
placeholder="Paste text here...",
lines=15,
)
with gr.Group(visible=False) as web_mode:
url_input = gr.Textbox(
label="Web Page URL", placeholder="Paste URL here..."
)
api_key_input = gr.Textbox(
label="OpenAI API Key",
type="password",
placeholder="Enter your OpenAI API key (sk-...)",
value=os.getenv("OPENAI_API_KEY", ""),
info="Your key is used solely for processing your requests.",
elem_id="api-key-textbox",
)
with gr.Column(scale=1):
with gr.Accordion("Advanced Settings", open=False):
model_choices_ui = [
(m["label"], m["value"]) for m in AVAILABLE_MODELS
]
default_model_value = next(
(
m["value"]
for m in AVAILABLE_MODELS
if "nano" in m["value"].lower()
),
AVAILABLE_MODELS[0]["value"],
)
model_choice = gr.Dropdown(
choices=model_choices_ui,
value=default_model_value,
label="Model Selection",
info="Select AI model for generation",
)
_model_info = gr.Markdown(
"**gpt-4.1**: Best quality | **gpt-4.1-nano**: Faster/Cheaper"
)
topic_number = gr.Slider(
label="Number of Topics",
minimum=2,
maximum=20,
step=1,
value=2,
)
cards_per_topic = gr.Slider(
label="Cards per Topic",
minimum=2,
maximum=30,
step=1,
value=3,
)
preference_prompt = gr.Textbox(
label="Learning Preferences",
placeholder="e.g., 'Beginner focus'",
lines=3,
)
generate_cloze_checkbox = gr.Checkbox(
label="Generate Cloze Cards (Experimental)", value=False
)
generate_button = gr.Button("Generate Cards", variant="primary")
with gr.Group(visible=False) as path_results:
gr.Markdown("### Learning Path Analysis")
subjects_list = gr.Dataframe(
headers=["Subject", "Prerequisites", "Time Estimate"],
label="Recommended Subjects",
interactive=False,
)
learning_order = gr.Markdown("### Recommended Learning Order")
projects = gr.Markdown("### Suggested Projects")
use_subjects = gr.Button("Use These Subjects βΉοΈ", variant="primary")
gr.Markdown(
"*Click to copy subjects to main input*", elem_classes="hint-text"
)
with gr.Group() as cards_output:
gr.Markdown("### Generated Cards")
with gr.Accordion("Output Format", open=False):
gr.Markdown(
"Cards: Index, Topic, Type, Q, A, Explanation, Example, Prerequisites, Outcomes, Misconceptions, Difficulty. Export: CSV, .apkg"
)
with gr.Accordion("Example Card Format", open=False):
gr.Code(
label="Example Card",
value='{"front": ..., "back": ..., "metadata": ...}',
language="json",
)
output = gr.Dataframe(
value=example_data,
headers=[
"Index",
"Topic",
"Card_Type",
"Question",
"Answer",
"Explanation",
"Example",
"Prerequisites",
"Learning_Outcomes",
"Common_Misconceptions",
"Difficulty",
],
interactive=True,
elem_classes="tall-dataframe",
wrap=True,
column_widths=[50, 100, 80, 200, 200, 250, 200, 150, 150, 150, 100],
)
with gr.Group(elem_classes="export-group"):
gr.Markdown("#### Export Generated Cards")
with gr.Row():
export_csv_button = gr.Button(
"Export to CSV", variant="secondary"
)
export_anki_button = gr.Button(
"Export to Anki Deck (.apkg)", variant="secondary"
)
with gr.Row():
download_csv = gr.File(label="Download CSV", interactive=False)
download_anki = gr.File(
label="Download Anki Deck", interactive=False
)
with gr.Row():
progress = gr.HTML(visible=False)
total_cards = gr.Number(
label="Total Cards Generated", value=0, visible=False
)
# --- Event Handlers --- (Updated to use functions from ankigen_core)
generation_mode.change(
fn=update_mode_visibility,
inputs=[generation_mode, subject, description, source_text, url_input],
outputs=[
subject_mode,
path_mode,
text_mode,
web_mode,
path_results,
cards_output,
subject,
description,
source_text,
url_input,
output,
subjects_list,
learning_order,
projects,
progress,
total_cards,
],
)
analyze_button.click(
fn=partial(analyze_learning_path, client_manager, response_cache),
inputs=[
api_key_input,
description,
model_choice,
],
outputs=[subjects_list, learning_order, projects],
)
use_subjects.click(
fn=use_selected_subjects,
inputs=[subjects_list],
outputs=[
generation_mode,
subject_mode,
path_mode,
text_mode,
web_mode,
path_results,
cards_output,
subject,
description,
source_text,
url_input,
topic_number,
preference_prompt,
output,
subjects_list,
learning_order,
projects,
progress,
total_cards,
],
)
generate_button.click(
fn=partial(orchestrate_card_generation, client_manager, response_cache),
inputs=[
api_key_input,
subject,
generation_mode,
source_text,
url_input,
model_choice,
topic_number,
cards_per_topic,
preference_prompt,
generate_cloze_checkbox,
],
outputs=[output, progress, total_cards],
show_progress="full",
)
export_csv_button.click(
fn=export_csv,
inputs=[output],
outputs=download_csv,
show_progress="full",
)
export_anki_button.click(
fn=export_deck,
inputs=[output, subject],
outputs=download_anki,
show_progress="full",
)
logger.info("Gradio interface created.")
return ankigen
# --- Main Execution --- (Runs if script is executed directly)
if __name__ == "__main__":
try:
ankigen_interface = create_ankigen_interface()
logger.info("Launching AnkiGen Gradio interface...")
# Ensure favicon.ico is in the same directory as app.py or provide correct path
favicon_path = Path(__file__).parent / "favicon.ico"
if favicon_path.exists():
ankigen_interface.launch(share=False, favicon_path=str(favicon_path))
else:
logger.warning(
f"Favicon not found at {favicon_path}, launching without it."
)
ankigen_interface.launch(share=False)
except Exception as e:
logger.critical(f"Failed to launch Gradio interface: {e}", exc_info=True)
|