File size: 50,387 Bytes
d09f6aa
313f83b
75775c4
100024e
313f83b
d6f5eba
d09f6aa
 
aee77fd
d09f6aa
 
313f83b
d09f6aa
 
100024e
313f83b
d09f6aa
313f83b
 
 
 
100024e
313f83b
 
100024e
 
 
313f83b
 
 
 
d09f6aa
 
 
 
 
aee77fd
313f83b
 
 
 
56fd459
75775c4
 
 
 
 
 
 
 
 
 
 
 
 
 
aee77fd
313f83b
 
 
 
 
 
 
 
 
 
 
75775c4
a6cf941
 
 
 
 
 
 
 
 
d09f6aa
 
a6cf941
d09f6aa
a6cf941
 
 
 
 
 
 
 
 
d09f6aa
100024e
a6cf941
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6f5eba
100024e
 
 
 
 
 
 
 
 
 
313f83b
100024e
 
 
 
 
313f83b
 
100024e
313f83b
100024e
 
d09f6aa
 
 
 
 
 
 
 
 
 
 
 
100024e
 
313f83b
 
 
 
100024e
 
 
 
313f83b
 
 
100024e
 
 
 
313f83b
100024e
 
313f83b
 
100024e
 
 
 
 
 
 
d09f6aa
 
 
 
 
 
d6f5eba
d09f6aa
 
 
 
 
 
 
 
 
 
 
 
 
d6f5eba
d09f6aa
 
 
 
 
 
 
 
 
 
 
 
313f83b
 
d09f6aa
 
 
 
 
 
 
 
100024e
 
313f83b
100024e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d09f6aa
100024e
 
d09f6aa
 
 
 
 
 
 
d6f5eba
d09f6aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
313f83b
d09f6aa
 
313f83b
d09f6aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
100024e
 
d09f6aa
 
313f83b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d09f6aa
 
 
 
 
 
 
 
 
 
 
 
 
100024e
 
d09f6aa
d6f5eba
d09f6aa
 
 
 
313f83b
75775c4
d09f6aa
 
 
 
 
d6f5eba
100024e
d09f6aa
 
 
 
 
 
 
 
 
 
 
 
 
 
100024e
 
 
 
 
 
 
 
 
 
 
 
 
d09f6aa
 
 
100024e
 
 
 
 
 
 
 
 
 
 
 
 
d09f6aa
100024e
 
 
d09f6aa
d6f5eba
313f83b
 
 
 
 
 
100024e
 
 
 
 
 
d09f6aa
 
 
100024e
 
 
 
 
 
 
d09f6aa
 
 
 
 
 
 
 
 
 
100024e
d09f6aa
 
 
 
100024e
d09f6aa
d6f5eba
a6cf941
100024e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
313f83b
100024e
 
 
313f83b
100024e
 
 
 
 
d09f6aa
100024e
d09f6aa
 
 
 
 
 
d6f5eba
a6cf941
d09f6aa
 
 
 
 
 
 
 
 
 
 
 
 
 
100024e
d09f6aa
 
 
 
 
 
100024e
d6f5eba
 
 
100024e
 
 
 
 
 
 
 
 
 
 
 
313f83b
 
 
 
 
 
 
 
 
 
 
 
 
 
100024e
 
313f83b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
100024e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
313f83b
100024e
d09f6aa
100024e
d09f6aa
 
 
 
 
100024e
d09f6aa
 
 
 
 
313f83b
 
 
 
 
 
 
 
 
 
 
 
 
 
d09f6aa
313f83b
d09f6aa
a6cf941
75775c4
100024e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
313f83b
100024e
 
313f83b
 
 
 
100024e
 
313f83b
 
100024e
313f83b
100024e
 
d09f6aa
100024e
d09f6aa
100024e
 
d09f6aa
aee77fd
100024e
 
313f83b
 
100024e
 
 
 
 
 
 
 
 
 
 
 
313f83b
 
 
100024e
 
 
 
 
313f83b
 
 
100024e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
313f83b
100024e
 
 
 
313f83b
 
100024e
313f83b
100024e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
313f83b
100024e
 
 
 
 
 
 
 
 
 
 
 
313f83b
100024e
 
 
 
 
 
 
 
 
 
 
 
313f83b
100024e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
313f83b
100024e
 
 
 
 
 
 
 
 
 
 
313f83b
 
100024e
 
 
 
 
 
 
 
 
313f83b
100024e
 
 
 
 
 
 
313f83b
100024e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d09f6aa
75775c4
100024e
d09f6aa
75775c4
aee77fd
d09f6aa
aee77fd
d09f6aa
 
 
876ef0e
d09f6aa
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
# Standard library imports
import asyncio
import os
import re
from datetime import datetime

import gradio as gr
import pandas as pd

from ankigen_core.card_generator import (
    AVAILABLE_MODELS,
    orchestrate_card_generation,
)  # GENERATION_MODES is internal to card_generator
from ankigen_core.exporters import (
    export_dataframe_to_apkg,
    export_dataframe_to_csv,
)  # Anki models (BASIC_MODEL, CLOZE_MODEL) are internal to exporters
from ankigen_core.learning_path import analyze_learning_path
from ankigen_core.llm_interface import (
    OpenAIClientManager,
)  # structured_output_completion is internal to core modules
from ankigen_core.ui_logic import (
    crawl_and_generate,
    create_crawler_main_mode_elements,
    update_mode_visibility,
    use_selected_subjects,
)
from ankigen_core.utils import (
    ResponseCache,
    get_logger,
)  # fetch_webpage_text is used by card_generator

# --- Initialization ---
logger = get_logger()
response_cache = ResponseCache()  # Initialize cache
client_manager = OpenAIClientManager()  # Initialize client manager

# Agent system is required

AGENTS_AVAILABLE_APP = True
logger.info("Agent system is available")

js_storage = """
async () => {
    const loadDecks = () => {
        const decks = localStorage.getItem('ankigen_decks');
        return decks ? JSON.parse(decks) : [];
    };
    const saveDecks = (decks) => {
        localStorage.setItem('ankigen_decks', JSON.stringify(decks));
    };
    window.loadStoredDecks = loadDecks;
    window.saveStoredDecks = saveDecks;
    return loadDecks();
}
"""

try:
    custom_theme = gr.themes.Soft().set(  # type: ignore
        body_background_fill="*background_fill_secondary",
        block_background_fill="*background_fill_primary",
        block_border_width="0",
        button_primary_background_fill="*primary_500",
        button_primary_text_color="white",
    )
except (AttributeError, ImportError):
    # Fallback for older gradio versions or when themes are not available
    custom_theme = None

# --- Example Data for Initialization ---
example_data = pd.DataFrame(
    [
        [
            "1.1",
            "SQL Basics",
            "basic",
            "What is a SELECT statement used for?",
            "Retrieving data from one or more database tables.",
            "The SELECT statement is the most common command in SQL...",
            "```sql\nSELECT column1, column2 FROM my_table WHERE condition;\n```",
            ["Understanding of database tables"],
            ["Retrieve specific data"],
            ["❌ SELECT * is always efficient (Reality: Can be slow for large tables)"],
            "beginner",
        ],
        [
            "2.1",
            "Python Fundamentals",
            "cloze",
            "The primary keyword to define a function in Python is {{c1::def}}.",
            "def",
            "Functions are defined using the `def` keyword...",
            """```python
def greet(name):
    print(f"Hello, {name}!")
```""",
            ["Basic programming concepts"],
            ["Define reusable blocks of code"],
            ["❌ Forgetting the colon (:) after the definition"],
            "beginner",
        ],
    ],
    columns=[
        "Index",
        "Topic",
        "Card_Type",
        "Question",
        "Answer",
        "Explanation",
        "Example",
        "Prerequisites",
        "Learning_Outcomes",
        "Common_Misconceptions",
        "Difficulty",
    ],
)
# -------------------------------------


# --- Helper function for log viewing (Subtask 15.5) ---
def get_recent_logs(logger_name="ankigen") -> str:
    """Fetches the most recent log entries from the current day's log file."""
    try:
        log_dir = os.path.join(os.path.expanduser("~"), ".ankigen", "logs")
        timestamp = datetime.now().strftime("%Y%m%d")
        # Use the logger_name parameter to construct the log file name
        log_file = os.path.join(log_dir, f"{logger_name}_{timestamp}.log")

        if os.path.exists(log_file):
            with open(log_file) as f:
                lines = f.readlines()
                # Display last N lines, e.g., 100
                return "\n".join(lines[-100:])  # Ensured this is standard newline
        return f"Log file for today ({log_file}) not found or is empty."
    except Exception as e:
        # Use the main app logger to log this error, but don't let it crash the UI
        # function
        logger.error(f"Error reading logs: {e}", exc_info=True)
        return f"Error reading logs: {e!s}"


def create_ankigen_interface():
    logger.info("Creating AnkiGen Gradio interface...")
    with gr.Blocks(
        theme=custom_theme,
        title="AnkiGen",
        css="""
            #footer {display:none !important}
            .tall-dataframe {min-height: 500px !important}
            .contain {max-width: 100% !important; margin: auto;}
            .output-cards {border-radius: 8px; box-shadow: 0 4px 6px -1px rgba(0,0,0,0.1);}
            .hint-text {font-size: 0.9em; color: #666; margin-top: 4px;}
            .export-group > .gradio-group { margin-bottom: 0 !important; padding-bottom: 5px !important; }

            /* REMOVING CSS previously intended for DataFrame readability to ensure plain text */
            /*
            .explanation-text {
                background: #f0fdf4;
                border-left: 3px solid #4ade80;
                padding: 0.5em;
                margin-bottom: 0.5em;
                border-radius: 4px;
            }
            .example-text-plain {
                background: #fff7ed;
                border-left: 3px solid #f97316;
                padding: 0.5em;
                margin-bottom: 0.5em;
                border-radius: 4px;
            }
            pre code {
                display: block;
                padding: 0.8em;
                background: #1e293b;
                color: #e2e8f0;
                border-radius: 4px;
                overflow-x: auto;
                font-family: 'Fira Code', 'Consolas', monospace;
                font-size: 0.9em;
                margin-bottom: 0.5em;
            }
            */
        """,
        js=js_storage,
    ) as ankigen:
        with gr.Column(elem_classes="contain"):
            gr.Markdown("# 📚 AnkiGen - Advanced Anki Card Generator")
            gr.Markdown("#### Generate comprehensive Anki flashcards using AI.")

            with gr.Accordion("Configuration Settings", open=True):
                with gr.Row():
                    with gr.Column(scale=1):
                        generation_mode = gr.Radio(
                            choices=[
                                ("Single Subject", "subject"),
                                ("Learning Path", "path"),
                                ("From Text", "text"),
                                ("From Web", "web"),
                            ],
                            value="subject",
                            label="Generation Mode",
                            info="Choose how you want to generate content",
                        )
                        with gr.Group() as subject_mode:
                            subject = gr.Textbox(
                                label="Subject",
                                placeholder="e.g., 'Basic SQL Concepts'",
                            )
                        with gr.Group(visible=False) as path_mode:
                            description = gr.Textbox(
                                label="Learning Goal",
                                placeholder="Paste a job description...",
                                lines=5,
                            )
                            analyze_button = gr.Button(
                                "Analyze & Break Down",
                                variant="secondary",
                            )
                        with gr.Group(visible=False) as text_mode:
                            source_text = gr.Textbox(
                                label="Source Text",
                                placeholder="Paste text here...",
                                lines=15,
                            )
                        with gr.Group(visible=False) as web_mode:
                            # --- BEGIN INTEGRATED CRAWLER UI (Task 16) ---
                            logger.info(
                                "Setting up integrated Web Crawler UI elements...",
                            )
                            (
                                crawler_input_ui_elements,  # List of inputs like URL, depth, model, patterns
                                web_crawl_button,  # Specific button to trigger crawl
                                web_crawl_progress_bar,
                                web_crawl_status_textbox,
                                web_crawl_custom_system_prompt,
                                web_crawl_custom_user_prompt_template,
                                web_crawl_use_sitemap_checkbox,
                                web_crawl_sitemap_url_textbox,
                            ) = create_crawler_main_mode_elements()

                            # Unpack crawler_input_ui_elements for clarity and use
                            web_crawl_url_input = crawler_input_ui_elements[0]
                            web_crawl_max_depth_slider = crawler_input_ui_elements[1]
                            web_crawl_req_per_sec_slider = crawler_input_ui_elements[2]
                            web_crawl_model_dropdown = crawler_input_ui_elements[3]
                            web_crawl_include_patterns_textbox = (
                                crawler_input_ui_elements[4]
                            )
                            web_crawl_exclude_patterns_textbox = (
                                crawler_input_ui_elements[5]
                            )
                            # --- END INTEGRATED CRAWLER UI ---

                        api_key_input = gr.Textbox(
                            label="OpenAI API Key",
                            type="password",
                            placeholder="Enter your OpenAI API key (sk-...)",
                            value=os.getenv("OPENAI_API_KEY", ""),
                            info="Your key is used solely for processing your requests.",
                            elem_id="api-key-textbox",
                        )
                    with gr.Column(scale=1):
                        with gr.Accordion("Advanced Settings", open=False):
                            model_choices_ui = [
                                (m["label"], m["value"]) for m in AVAILABLE_MODELS
                            ]
                            default_model_value = next(
                                (
                                    m["value"]
                                    for m in AVAILABLE_MODELS
                                    if "nano" in m["value"].lower()
                                ),
                                AVAILABLE_MODELS[0]["value"],
                            )
                            model_choice = gr.Dropdown(
                                choices=model_choices_ui,
                                value=default_model_value,
                                label="Model Selection",
                                info="Select AI model for generation",
                                allow_custom_value=True,
                            )
                            _model_info = gr.Markdown(
                                "**gpt-4.1**: Best quality | **gpt-4.1-nano**: Faster/Cheaper",
                            )
                            topic_number = gr.Slider(
                                label="Number of Topics",
                                minimum=2,
                                maximum=20,
                                step=1,
                                value=2,
                            )
                            cards_per_topic = gr.Slider(
                                label="Cards per Topic",
                                minimum=2,
                                maximum=30,
                                step=1,
                                value=3,
                            )
                            preference_prompt = gr.Textbox(
                                label="Learning Preferences",
                                placeholder="e.g., 'Beginner focus'",
                                lines=3,
                            )
                            generate_cloze_checkbox = gr.Checkbox(
                                label="Generate Cloze Cards (Experimental)",
                                value=False,
                            )

                            # Agent System Controls (simplified since we're agent-only)
                            if AGENTS_AVAILABLE_APP:
                                # Hidden dropdown for compatibility - always set to agent_only
                                agent_mode_dropdown = gr.Dropdown(
                                    choices=[("Agent Only", "agent_only")],
                                    value="agent_only",
                                    label="Agent Mode",
                                    visible=False,
                                )

                                with gr.Accordion("Agent Configuration", open=False):
                                    gr.Markdown("**Core Generation Pipeline**")
                                    enable_subject_expert = gr.Checkbox(
                                        label="Subject Expert Agent",
                                        value=True,
                                        info="Domain-specific expertise",
                                    )
                                    enable_generation_coordinator = gr.Checkbox(
                                        label="Generation Coordinator",
                                        value=True,
                                        info="Orchestrates multi-agent generation",
                                    )

                                    gr.Markdown("**Quality Assurance**")
                                    enable_content_judge = gr.Checkbox(
                                        label="Content Accuracy Judge",
                                        value=True,
                                        info="Factual correctness validation",
                                    )
                                    enable_clarity_judge = gr.Checkbox(
                                        label="Clarity Judge",
                                        value=True,
                                        info="Language clarity and comprehension",
                                    )

                                    gr.Markdown("**Optional Enhancements**")
                                    enable_pedagogical_agent = gr.Checkbox(
                                        label="Pedagogical Agent",
                                        value=False,
                                        info="Educational effectiveness review",
                                    )
                                    enable_pedagogical_judge = gr.Checkbox(
                                        label="Pedagogical Judge",
                                        value=False,
                                        info="Learning theory compliance",
                                    )
                                    enable_enhancement_agent = gr.Checkbox(
                                        label="Enhancement Agent",
                                        value=False,
                                        info="Content enrichment and metadata",
                                    )

                                    with gr.Accordion(
                                        "🛠️ Agent Model Selection", open=False
                                    ):
                                        gr.Markdown("**Individual Agent Models**")

                                        # Generator models
                                        subject_expert_model = gr.Dropdown(
                                            choices=model_choices_ui,
                                            value="gpt-4.1",
                                            label="Subject Expert Model",
                                            info="Model for domain expertise",
                                            allow_custom_value=True,
                                        )
                                        generation_coordinator_model = gr.Dropdown(
                                            choices=model_choices_ui,
                                            value="gpt-4.1-nano",
                                            label="Generation Coordinator Model",
                                            info="Model for orchestration",
                                            allow_custom_value=True,
                                        )

                                        # Judge models
                                        content_judge_model = gr.Dropdown(
                                            choices=model_choices_ui,
                                            value="gpt-4.1",
                                            label="Content Accuracy Judge Model",
                                            info="Model for fact-checking",
                                            allow_custom_value=True,
                                        )
                                        clarity_judge_model = gr.Dropdown(
                                            choices=model_choices_ui,
                                            value="gpt-4.1-nano",
                                            label="Clarity Judge Model",
                                            info="Model for language clarity",
                                            allow_custom_value=True,
                                        )

                                        # Enhancement models
                                        pedagogical_agent_model = gr.Dropdown(
                                            choices=model_choices_ui,
                                            value="gpt-4.1",
                                            label="Pedagogical Agent Model",
                                            info="Model for educational theory",
                                            allow_custom_value=True,
                                        )
                                        enhancement_agent_model = gr.Dropdown(
                                            choices=model_choices_ui,
                                            value="gpt-4.1",
                                            label="Enhancement Agent Model",
                                            info="Model for content enrichment",
                                            allow_custom_value=True,
                                        )
                            else:
                                # Placeholder when agents not available
                                agent_mode_dropdown = gr.Dropdown(
                                    choices=[("Legacy Only", "legacy")],
                                    value="legacy",
                                    label="Agent Mode",
                                    info="Agent system not available",
                                    interactive=False,
                                )
                                enable_subject_expert = gr.Checkbox(
                                    value=False, visible=False
                                )
                                enable_generation_coordinator = gr.Checkbox(
                                    value=False, visible=False
                                )
                                enable_pedagogical_agent = gr.Checkbox(
                                    value=False, visible=False
                                )
                                enable_content_judge = gr.Checkbox(
                                    value=False, visible=False
                                )
                                enable_clarity_judge = gr.Checkbox(
                                    value=False, visible=False
                                )
                                enable_pedagogical_judge = gr.Checkbox(
                                    value=False, visible=False
                                )
                                enable_enhancement_agent = gr.Checkbox(
                                    value=False, visible=False
                                )

                                # Hidden model dropdowns for non-agent mode
                                subject_expert_model = gr.Dropdown(
                                    value="gpt-4.1", visible=False
                                )
                                generation_coordinator_model = gr.Dropdown(
                                    value="gpt-4.1-nano", visible=False
                                )
                                content_judge_model = gr.Dropdown(
                                    value="gpt-4.1", visible=False
                                )
                                clarity_judge_model = gr.Dropdown(
                                    value="gpt-4.1-nano", visible=False
                                )
                                pedagogical_agent_model = gr.Dropdown(
                                    value="gpt-4.1", visible=False
                                )
                                enhancement_agent_model = gr.Dropdown(
                                    value="gpt-4.1", visible=False
                                )

            generate_button = gr.Button("Generate Cards", variant="primary")

            with gr.Group(visible=False) as path_results:
                gr.Markdown("### Learning Path Analysis")
                subjects_list = gr.Dataframe(
                    headers=["Subject", "Prerequisites", "Time Estimate"],
                    label="Recommended Subjects",
                    interactive=False,
                )
                learning_order = gr.Markdown("### Recommended Learning Order")
                projects = gr.Markdown("### Suggested Projects")
                use_subjects = gr.Button("Use These Subjects ℹ️", variant="primary")
                gr.Markdown(
                    "*Click to copy subjects to main input*",
                    elem_classes="hint-text",
                )

            with gr.Group() as cards_output:
                gr.Markdown("### Generated Cards")
                with gr.Accordion("Output Format", open=False):
                    gr.Markdown(
                        "Cards: Index, Topic, Type, Q, A, Explanation, Example, Prerequisites, Outcomes, Misconceptions, Difficulty. Export: CSV, .apkg",
                    )
                    with gr.Accordion("Example Card Format", open=False):
                        gr.Code(
                            label="Example Card",
                            value='{"front": ..., "back": ..., "metadata": ...}',
                            language="json",
                        )
                output = gr.DataFrame(
                    value=example_data,
                    headers=[
                        "Index",
                        "Topic",
                        "Card_Type",
                        "Question",
                        "Answer",
                        "Explanation",
                        "Example",
                        "Prerequisites",
                        "Learning_Outcomes",
                        "Common_Misconceptions",
                        "Difficulty",
                    ],
                    datatype=[
                        "number",
                        "str",
                        "str",
                        "str",
                        "str",
                        "str",
                        "str",
                        "str",
                        "str",
                        "str",
                        "str",
                    ],
                    interactive=True,
                    elem_classes="tall-dataframe",
                    wrap=True,
                    column_widths=[
                        50,
                        100,
                        80,
                        200,
                        200,
                        250,
                        200,
                        150,
                        150,
                        150,
                        100,
                    ],
                )
                total_cards_html = gr.HTML(
                    value="<div><b>Total Cards Generated:</b> <span id='total-cards-count'>0</span></div>",
                    visible=False,
                )

                # Token usage display
                token_usage_html = gr.HTML(
                    value="<div style='margin-top: 8px;'><b>Token Usage:</b> <span id='token-usage-display'>No usage data</span></div>",
                    visible=True,
                )

                # Export buttons
                with gr.Row(elem_classes="export-group"):
                    export_csv_button = gr.Button("Export to CSV")
                    export_apkg_button = gr.Button("Export to .apkg")
                download_file_output = gr.File(label="Download Deck", visible=False)

            # --- Event Handlers --- (Updated to use functions from ankigen_core)
            generation_mode.change(
                fn=update_mode_visibility,
                inputs=[
                    generation_mode,
                    subject,
                    description,
                    source_text,
                    web_crawl_url_input,
                ],
                outputs=[
                    subject_mode,
                    path_mode,
                    text_mode,
                    web_mode,
                    path_results,
                    cards_output,
                    subject,
                    description,
                    source_text,
                    web_crawl_url_input,
                    output,
                    subjects_list,
                    learning_order,
                    projects,
                    total_cards_html,
                ],
            )

            # Define an async wrapper for the analyze_learning_path partial
            async def handle_analyze_click(
                api_key_val,
                description_val,
                model_choice_val,
                progress=gr.Progress(track_tqdm=True),  # Added progress tracker
            ):
                try:
                    # Call analyze_learning_path directly, as client_manager and response_cache are in scope
                    return await analyze_learning_path(
                        client_manager,  # from global scope
                        response_cache,  # from global scope
                        api_key_val,
                        description_val,
                        model_choice_val,
                    )
                except gr.Error as e:  # Catch the specific Gradio error
                    logger.error(f"Learning path analysis failed: {e}", exc_info=True)
                    # Re-raise the error so Gradio displays it to the user
                    # And return appropriate empty updates for the outputs
                    # to prevent a subsequent Gradio error about mismatched return values.
                    gr.Error(str(e))  # This will be shown in the UI.
                    empty_subjects_df = pd.DataFrame(
                        columns=["Subject", "Prerequisites", "Time Estimate"],
                    )
                    return (
                        gr.update(
                            value=empty_subjects_df,
                        ),  # For subjects_list (DataFrame)
                        gr.update(value=""),  # For learning_order (Markdown)
                        gr.update(value=""),  # For projects (Markdown)
                    )

            analyze_button.click(
                fn=handle_analyze_click,  # MODIFIED: Use the new async handler
                inputs=[
                    api_key_input,
                    description,
                    model_choice,
                ],
                outputs=[subjects_list, learning_order, projects],
            )

            use_subjects.click(
                fn=use_selected_subjects,
                inputs=[subjects_list],
                outputs=[
                    generation_mode,
                    subject_mode,
                    path_mode,
                    text_mode,
                    web_mode,
                    path_results,
                    cards_output,
                    subject,
                    description,
                    source_text,
                    web_crawl_url_input,
                    topic_number,
                    preference_prompt,
                    output,
                    subjects_list,
                    learning_order,
                    projects,
                    total_cards_html,
                ],
            )

            # Define an async wrapper for the orchestrate_card_generation partial
            async def handle_generate_click(
                api_key_input_val,
                subject_val,
                generation_mode_val,
                source_text_val,
                url_input_val,
                model_choice_val,
                topic_number_val,
                cards_per_topic_val,
                preference_prompt_val,
                generate_cloze_checkbox_val,
                agent_mode_val,
                enable_subject_expert_val,
                enable_generation_coordinator_val,
                enable_pedagogical_agent_val,
                enable_content_judge_val,
                enable_clarity_judge_val,
                enable_pedagogical_judge_val,
                enable_enhancement_agent_val,
                subject_expert_model_val,
                generation_coordinator_model_val,
                content_judge_model_val,
                clarity_judge_model_val,
                pedagogical_agent_model_val,
                enhancement_agent_model_val,
                progress=gr.Progress(track_tqdm=True),  # Added progress tracker
            ):
                # Apply agent settings if agents are available
                if AGENTS_AVAILABLE_APP:
                    import os

                    # Set agent mode
                    os.environ["ANKIGEN_AGENT_MODE"] = agent_mode_val

                    # Set individual agent flags (using correct environment variable names)
                    os.environ["ANKIGEN_ENABLE_SUBJECT_EXPERT"] = str(
                        enable_subject_expert_val
                    ).lower()
                    os.environ["ANKIGEN_ENABLE_GENERATION_COORDINATOR"] = str(
                        enable_generation_coordinator_val
                    ).lower()
                    os.environ["ANKIGEN_ENABLE_PEDAGOGICAL_AGENT"] = str(
                        enable_pedagogical_agent_val
                    ).lower()
                    os.environ["ANKIGEN_ENABLE_CONTENT_JUDGE"] = str(
                        enable_content_judge_val
                    ).lower()
                    os.environ["ANKIGEN_ENABLE_CLARITY_JUDGE"] = str(
                        enable_clarity_judge_val
                    ).lower()
                    os.environ["ANKIGEN_ENABLE_PEDAGOGICAL_JUDGE"] = str(
                        enable_pedagogical_judge_val
                    ).lower()
                    os.environ["ANKIGEN_ENABLE_ENHANCEMENT_AGENT"] = str(
                        enable_enhancement_agent_val
                    ).lower()

                    # Enable additional required flags for proper agent coordination
                    os.environ["ANKIGEN_ENABLE_JUDGE_COORDINATOR"] = (
                        "true"  # Required for judge coordination
                    )
                    os.environ["ANKIGEN_ENABLE_PARALLEL_JUDGING"] = (
                        "true"  # Enable parallel judging for performance
                    )

                    # Configure agent models from UI selections
                    model_overrides = {
                        "subject_expert": subject_expert_model_val,
                        "generation_coordinator": generation_coordinator_model_val,
                        "content_accuracy_judge": content_judge_model_val,
                        "clarity_judge": clarity_judge_model_val,
                        "pedagogical_agent": pedagogical_agent_model_val,
                        "enhancement_agent": enhancement_agent_model_val,
                    }

                    # Template variables for Jinja rendering
                    template_vars = {
                        "subject": subject_val or "general studies",
                        "difficulty": "intermediate",  # Could be made configurable
                        "topic": subject_val or "general concepts",
                    }

                    # Initialize config manager with model overrides and template variables
                    from ankigen_core.agents.config import get_config_manager

                    get_config_manager(model_overrides, template_vars)

                    # Log the agent configuration
                    logger.info(f"Agent mode set to: {agent_mode_val}")
                    logger.info(f"Model overrides: {model_overrides}")
                    logger.info(
                        f"Active agents: Subject Expert={enable_subject_expert_val}, Generation Coordinator={enable_generation_coordinator_val}, Content Judge={enable_content_judge_val}, Clarity Judge={enable_clarity_judge_val}"
                    )

                    # Reload feature flags to pick up the new environment variables
                    try:
                        # Agent system is available
                        logger.info("Agent system enabled")
                    except Exception as e:
                        logger.warning(f"Failed to reload feature flags: {e}")

                # Recreate the partial function call, but now it can be awaited
                # The actual orchestrate_card_generation is already partially applied with client_manager and response_cache
                # So, we need to get that specific partial object if it's stored, or redefine the partial logic here.
                # For simplicity and clarity, let's assume direct call to orchestrate_card_generation directly here
                return await orchestrate_card_generation(
                    client_manager,  # from global scope
                    response_cache,  # from global scope
                    api_key_input_val,
                    subject_val,
                    generation_mode_val,
                    source_text_val,
                    url_input_val,
                    model_choice_val,
                    topic_number_val,
                    cards_per_topic_val,
                    preference_prompt_val,
                    generate_cloze_checkbox_val,
                )
                # Expect 3-tuple return (dataframe, total_cards_html, token_usage_html)

            generate_button.click(
                fn=handle_generate_click,  # MODIFIED: Use the new async handler
                inputs=[
                    api_key_input,
                    subject,
                    generation_mode,
                    source_text,
                    web_crawl_url_input,
                    model_choice,
                    topic_number,
                    cards_per_topic,
                    preference_prompt,
                    generate_cloze_checkbox,
                    agent_mode_dropdown,
                    enable_subject_expert,
                    enable_generation_coordinator,
                    enable_pedagogical_agent,
                    enable_content_judge,
                    enable_clarity_judge,
                    enable_pedagogical_judge,
                    enable_enhancement_agent,
                    subject_expert_model,
                    generation_coordinator_model,
                    content_judge_model,
                    clarity_judge_model,
                    pedagogical_agent_model,
                    enhancement_agent_model,
                ],
                outputs=[output, total_cards_html, token_usage_html],
                show_progress="full",
            )

            # Define handler for CSV export (similar to APKG)
            async def handle_export_dataframe_to_csv_click(df: pd.DataFrame):
                if df is None or df.empty:
                    gr.Warning("No cards generated to export to CSV.")
                    return gr.update(value=None, visible=False)

                try:
                    # export_dataframe_to_csv from exporters.py returns a relative path
                    # or a filename if no path was part of its input.
                    # It already handles None input for filename_suggestion.
                    exported_path_relative = await asyncio.to_thread(
                        export_dataframe_to_csv,
                        df,
                        filename_suggestion="ankigen_cards.csv",
                    )

                    if exported_path_relative:
                        exported_path_absolute = os.path.abspath(exported_path_relative)
                        gr.Info(
                            f"CSV ready for download: {os.path.basename(exported_path_absolute)}",
                        )
                        return gr.update(value=exported_path_absolute, visible=True)
                    # This case might happen if export_dataframe_to_csv itself had an internal issue
                    # and returned None, though it typically raises an error or returns path.
                    gr.Warning("CSV export failed or returned no path.")
                    return gr.update(value=None, visible=False)
                except Exception as e:
                    logger.error(
                        f"Error exporting DataFrame to CSV: {e}",
                        exc_info=True,
                    )
                    gr.Error(f"Failed to export to CSV: {e!s}")
                    return gr.update(value=None, visible=False)

            export_csv_button.click(
                fn=handle_export_dataframe_to_csv_click,  # Use the new handler
                inputs=[output],
                outputs=[download_file_output],
                api_name="export_main_to_csv",
            )

            # Define handler for APKG export from DataFrame (Item 5)
            async def handle_export_dataframe_to_apkg_click(
                df: pd.DataFrame,
                subject_for_deck_name: str,
            ):
                if df is None or df.empty:
                    gr.Warning("No cards generated to export.")
                    return gr.update(value=None, visible=False)

                timestamp_for_name = datetime.now().strftime("%Y%m%d_%H%M%S")

                deck_name_inside_anki = (
                    "AnkiGen Exported Deck"  # Default name inside Anki
                )
                if subject_for_deck_name and subject_for_deck_name.strip():
                    clean_subject = re.sub(
                        r"[^a-zA-Z0-9\s_.-]",
                        "",
                        subject_for_deck_name.strip(),
                    )
                    deck_name_inside_anki = f"AnkiGen - {clean_subject}"
                elif not df.empty and "Topic" in df.columns and df["Topic"].iloc[0]:
                    first_topic = df["Topic"].iloc[0]
                    clean_first_topic = re.sub(
                        r"[^a-zA-Z0-9\s_.-]",
                        "",
                        str(first_topic).strip(),
                    )
                    deck_name_inside_anki = f"AnkiGen - {clean_first_topic}"
                else:
                    deck_name_inside_anki = f"AnkiGen Deck - {timestamp_for_name}"  # Fallback with timestamp

                # Construct the output filename and path
                # Use the deck_name_inside_anki for the base of the filename for consistency
                base_filename = re.sub(r"[^a-zA-Z0-9_.-]", "_", deck_name_inside_anki)
                output_filename = f"{base_filename}_{timestamp_for_name}.apkg"

                output_dir = "output_decks"  # As defined in export_dataframe_to_apkg
                os.makedirs(output_dir, exist_ok=True)  # Ensure directory exists
                full_output_path = os.path.join(output_dir, output_filename)

                try:
                    # Call export_dataframe_to_apkg with correct arguments:
                    # 1. df (DataFrame)
                    # 2. output_path (full path for the .apkg file)
                    # 3. deck_name (name of the deck inside Anki)
                    exported_path_relative = await asyncio.to_thread(
                        export_dataframe_to_apkg,
                        df,
                        full_output_path,  # Pass the constructed full output path
                        deck_name_inside_anki,  # This is the name for the deck inside the .apkg file
                    )

                    # export_dataframe_to_apkg returns the actual path it used, which should match full_output_path
                    exported_path_absolute = os.path.abspath(exported_path_relative)

                    gr.Info(
                        f"Successfully exported deck '{deck_name_inside_anki}' to {exported_path_absolute}",
                    )
                    return gr.update(value=exported_path_absolute, visible=True)
                except Exception as e:
                    logger.error(
                        f"Error exporting DataFrame to APKG: {e}",
                        exc_info=True,
                    )
                    gr.Error(f"Failed to export to APKG: {e!s}")
                    return gr.update(value=None, visible=False)

            # Wire button to handler (Item 6)
            export_apkg_button.click(
                fn=handle_export_dataframe_to_apkg_click,
                inputs=[output, subject],  # Added subject as input
                outputs=[download_file_output],
                api_name="export_main_to_apkg",
            )

            async def handle_web_crawl_click(
                api_key_val: str,
                url: str,
                max_depth: int,
                req_per_sec: float,
                model: str,  # This is the model for LLM processing of crawled content
                include_patterns: str,
                exclude_patterns: str,
                custom_system_prompt: str,
                custom_user_prompt_template: str,
                use_sitemap: bool,
                sitemap_url: str,
                progress=gr.Progress(track_tqdm=True),
            ):
                progress(0, desc="Initializing web crawl...")
                yield {
                    web_crawl_status_textbox: gr.update(
                        value="Initializing web crawl...",
                    ),
                    output: gr.update(value=None),  # Clear main output table
                    total_cards_html: gr.update(
                        visible=False,
                        value="<div><b>Total Cards Generated:</b> <span id='total-cards-count'>0</span></div>",
                    ),
                }

                if not api_key_val:
                    logger.error("API Key is missing for web crawler operation.")
                    yield {
                        web_crawl_status_textbox: gr.update(
                            value="Error: OpenAI API Key is required.",
                        ),
                    }
                    return
                try:
                    await client_manager.initialize_client(api_key_val)
                except Exception as e:
                    logger.error(
                        f"Failed to initialize OpenAI client for crawler: {e}",
                        exc_info=True,
                    )
                    yield {
                        web_crawl_status_textbox: gr.update(
                            value=f"Error: Client init failed: {e!s}",
                        ),
                    }
                    return

                message, cards_list_of_dicts, _ = await crawl_and_generate(
                    url=url,
                    max_depth=max_depth,
                    crawler_requests_per_second=req_per_sec,
                    include_patterns=include_patterns,
                    exclude_patterns=exclude_patterns,
                    model=model,
                    export_format_ui="",  # No longer used for direct export from crawl_and_generate
                    custom_system_prompt=custom_system_prompt,
                    custom_user_prompt_template=custom_user_prompt_template,
                    use_sitemap=use_sitemap,
                    sitemap_url_str=sitemap_url,
                    client_manager=client_manager,  # Passed from global scope
                    progress=progress,  # Gradio progress object
                    status_textbox=web_crawl_status_textbox,  # Specific status textbox for crawl
                )

                if cards_list_of_dicts:
                    try:
                        # Convert List[Dict] to Pandas DataFrame for the main output component
                        preview_df_value = pd.DataFrame(cards_list_of_dicts)
                        # Ensure columns match the main output dataframe
                        # The `generate_cards_from_crawled_content` which produces `cards_list_of_dicts`
                        # should already format it correctly. If not, mapping is needed here.
                        # For now, assume it matches the main table structure expected by `gr.Dataframe(value=example_data)`

                        # Check if columns match example_data, if not, reorder/rename or log warning
                        if not preview_df_value.empty:
                            expected_cols = example_data.columns.tolist()
                            # Basic check, might need more robust mapping if structures differ significantly
                            if not all(
                                col in preview_df_value.columns for col in expected_cols
                            ):
                                logger.warning(
                                    "Crawled card data columns mismatch main output, attempting to use available data.",
                                )
                                # Potentially select only common columns or reindex if necessary
                                # For now, we'll pass it as is, Gradio might handle extra/missing cols gracefully or error.

                        num_cards = len(preview_df_value)
                        total_cards_update = f"<div><b>Total Cards Prepared from Crawl:</b> <span id='total-cards-count'>{num_cards}</span></div>"

                        yield {
                            web_crawl_status_textbox: gr.update(value=message),
                            output: gr.update(value=preview_df_value),
                            total_cards_html: gr.update(
                                visible=True,
                                value=total_cards_update,
                            ),
                        }
                    except Exception as e:
                        logger.error(
                            f"Error converting crawled cards to DataFrame: {e}",
                            exc_info=True,
                        )
                        yield {
                            web_crawl_status_textbox: gr.update(
                                value=f"{message} (Error displaying cards: {e!s})",
                            ),
                            output: gr.update(value=None),
                            total_cards_html: gr.update(visible=False),
                        }
                else:
                    yield {
                        web_crawl_status_textbox: gr.update(
                            value=message,
                        ),  # Message from crawl_and_generate (e.g. no cards)
                        output: gr.update(value=None),
                        total_cards_html: gr.update(visible=False),
                    }

            web_crawl_button.click(
                fn=handle_web_crawl_click,
                inputs=[
                    api_key_input,
                    web_crawl_url_input,
                    web_crawl_max_depth_slider,
                    web_crawl_req_per_sec_slider,
                    web_crawl_model_dropdown,  # Model for LLM processing of content
                    web_crawl_include_patterns_textbox,
                    web_crawl_exclude_patterns_textbox,
                    web_crawl_custom_system_prompt,
                    web_crawl_custom_user_prompt_template,
                    web_crawl_use_sitemap_checkbox,
                    web_crawl_sitemap_url_textbox,
                ],
                outputs=[
                    web_crawl_status_textbox,  # Specific status for crawl
                    output,  # Main output DataFrame
                    total_cards_html,  # Main total cards display
                ],
                # Removed progress_bar from outputs as it's handled by gr.Progress(track_tqdm=True)
            )

    logger.info("AnkiGen Gradio interface creation complete.")
    return ankigen


# --- Main Execution --- (Runs if script is executed directly)
if __name__ == "__main__":
    try:
        ankigen_interface = create_ankigen_interface()
        logger.info("Launching AnkiGen Gradio interface...")
        ankigen_interface.launch()
    except Exception as e:
        logger.critical(f"Failed to launch Gradio interface: {e}", exc_info=True)