File size: 26,417 Bytes
d09f6aa 313f83b 75775c4 100024e 313f83b d6f5eba d09f6aa aee77fd d09f6aa 313f83b d09f6aa 100024e 313f83b d09f6aa 313f83b 7e2bb59 313f83b d6bb543 d09f6aa aee77fd 313f83b 56fd459 75775c4 aee77fd 313f83b 75775c4 6604cbf a6cf941 d09f6aa a6cf941 d09f6aa a6cf941 d09f6aa 100024e a6cf941 d6f5eba 100024e 313f83b 100024e 313f83b 100024e 313f83b 100024e 2eb64de d09f6aa 2eb64de d09f6aa 4de67d6 d6f5eba d09f6aa 7e2bb59 d6f5eba d09f6aa d6bb543 d09f6aa d6f5eba 0333a17 d6bb543 0333a17 d6bb543 0333a17 d09f6aa 313f83b d09f6aa 100024e d09f6aa 0333a17 313f83b d09f6aa da741a9 75775c4 d09f6aa d6f5eba 100024e d09f6aa 100024e d09f6aa 100024e d09f6aa 100024e d09f6aa d6f5eba 313f83b 100024e d09f6aa 100024e d09f6aa 100024e d6f5eba 7e2bb59 100024e 0333a17 7e2bb59 100024e 7e2bb59 100024e 7e2bb59 100024e 0333a17 100024e d09f6aa 7e2bb59 d09f6aa 0333a17 d09f6aa 313f83b d09f6aa a6cf941 75775c4 100024e 313f83b 100024e 313f83b 100024e 313f83b 100024e 313f83b 100024e d09f6aa 100024e d09f6aa 100024e d09f6aa aee77fd 100024e 313f83b 100024e 313f83b 100024e 313f83b 100024e 313f83b 100024e 313f83b 100024e 313f83b 100024e d6bb543 7e2bb59 100024e d09f6aa 75775c4 100024e d09f6aa 75775c4 aee77fd d09f6aa aee77fd 7514bed 2eb64de 7514bed d09f6aa 2eb64de d09f6aa 7514bed b8e53ed 6604cbf b8e53ed 6604cbf 7514bed d09f6aa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 |
# Standard library imports
import asyncio
import os
import re
from datetime import datetime
import gradio as gr
import pandas as pd
from ankigen_core.card_generator import (
AVAILABLE_MODELS,
orchestrate_card_generation,
) # GENERATION_MODES is internal to card_generator
from ankigen_core.exporters import (
export_dataframe_to_apkg,
export_dataframe_to_csv,
) # Anki models (BASIC_MODEL, CLOZE_MODEL) are internal to exporters
from ankigen_core.llm_interface import (
OpenAIClientManager,
) # structured_output_completion is internal to core modules
from ankigen_core.ui_logic import update_mode_visibility
from ankigen_core.utils import (
ResponseCache,
get_logger,
) # fetch_webpage_text is used by card_generator
from ankigen_core.auto_config import AutoConfigService
# --- Initialization ---
logger = get_logger()
response_cache = ResponseCache() # Initialize cache
client_manager = OpenAIClientManager() # Initialize client manager
# Agent system is required
AGENTS_AVAILABLE_APP = True
logger.info("Agent system is available")
js_storage = """
async () => {
const loadDecks = () => {
const decks = localStorage.getItem('ankigen_decks');
return decks ? JSON.parse(decks) : [];
};
const saveDecks = (decks) => {
localStorage.setItem('ankigen_decks', JSON.stringify(decks));
};
window.loadStoredDecks = loadDecks;
window.saveStoredDecks = saveDecks;
return loadDecks();
}
"""
try:
custom_theme = gr.themes.Soft().set( # type: ignore
body_background_fill="*background_fill_secondary",
block_background_fill="*background_fill_primary",
block_border_width="0",
button_primary_background_fill="*primary_500",
button_primary_text_color="white",
)
except (AttributeError, ImportError):
# Fallback for older gradio versions or when themes are not available
custom_theme = None
# CSS for the interface (moved to module level for Gradio 6 compatibility)
custom_css = """
#footer {display:none !important}
.tall-dataframe {min-height: 500px !important}
.contain {max-width: 100% !important; margin: auto;}
.output-cards {border-radius: 8px; box-shadow: 0 4px 6px -1px rgba(0,0,0,0.1);}
.hint-text {font-size: 0.9em; color: #666; margin-top: 4px;}
.export-group > .gradio-group { margin-bottom: 0 !important; padding-bottom: 5px !important; }
"""
# --- Example Data for Initialization ---
example_data = pd.DataFrame(
[
[
"1.1",
"SQL Basics",
"basic",
"What is a SELECT statement used for?",
"Retrieving data from one or more database tables.",
"The SELECT statement is the most common command in SQL...",
"```sql\nSELECT column1, column2 FROM my_table WHERE condition;\n```",
["Understanding of database tables"],
["Retrieve specific data"],
"beginner",
],
[
"2.1",
"Python Fundamentals",
"cloze",
"The primary keyword to define a function in Python is {{c1::def}}.",
"def",
"Functions are defined using the `def` keyword...",
"""```python
def greet(name):
print(f"Hello, {name}!")
```""",
["Basic programming concepts"],
["Define reusable blocks of code"],
"beginner",
],
],
columns=[
"Index",
"Topic",
"Card_Type",
"Question",
"Answer",
"Explanation",
"Example",
"Prerequisites",
"Learning_Outcomes",
"Difficulty",
],
)
# -------------------------------------
# --- Helper function for log viewing (Subtask 15.5) ---
def get_recent_logs(logger_name="ankigen") -> str:
"""Fetches the most recent log entries from the current day's log file."""
try:
log_dir = os.path.join(os.path.expanduser("~"), ".ankigen", "logs")
timestamp = datetime.now().strftime("%Y%m%d")
# Use the logger_name parameter to construct the log file name
log_file = os.path.join(log_dir, f"{logger_name}_{timestamp}.log")
if os.path.exists(log_file):
with open(log_file) as f:
lines = f.readlines()
# Display last N lines, e.g., 100
return "\n".join(lines[-100:]) # Ensured this is standard newline
return f"Log file for today ({log_file}) not found or is empty."
except Exception as e:
# Use the main app logger to log this error, but don't let it crash the UI
# function
logger.error(f"Error reading logs: {e}", exc_info=True)
return f"Error reading logs: {e!s}"
def create_ankigen_interface(theme=None, css=None, js=None):
logger.info("Creating AnkiGen Gradio interface...")
# Theme/css/js passed in for Gradio 4.x compatibility (goes in Blocks())
# For Gradio 6.x, these are passed to launch() instead
blocks_kwargs = {"title": "AnkiGen"}
if theme is not None:
blocks_kwargs["theme"] = theme
if css is not None:
blocks_kwargs["css"] = css
if js is not None:
blocks_kwargs["js"] = js
with gr.Blocks(**blocks_kwargs) as ankigen:
with gr.Column(elem_classes="contain"):
gr.Markdown("# π AnkiGen - Anki Card Generator")
gr.Markdown("#### Generate Anki flashcards using AI.")
with gr.Accordion("Configuration Settings", open=True):
with gr.Row():
with gr.Column(scale=1):
generation_mode = gr.Radio(
choices=[
("Single Subject", "subject"),
],
value="subject",
label="Generation Mode",
info="Choose how you want to generate content",
visible=False, # Hidden since only one mode exists
)
with gr.Group() as subject_mode:
subject = gr.Textbox(
label="Subject",
placeholder="e.g., 'Basic SQL Concepts'",
)
auto_fill_btn = gr.Button(
"Auto-fill",
variant="secondary",
)
api_key_input = gr.Textbox(
label="OpenAI API Key",
type="password",
placeholder="Enter your OpenAI API key (sk-...)",
value=os.getenv("OPENAI_API_KEY", ""),
info="Your key is used solely for processing your requests.",
elem_id="api-key-textbox",
)
# Context7 Library Documentation
library_accordion = gr.Accordion(
"Library Documentation (optional)", open=False
)
with library_accordion:
library_name_input = gr.Textbox(
label="Library Name",
placeholder="e.g., 'react', 'tensorflow', 'pandas'",
info="Fetch up-to-date documentation for this library",
)
library_topic_input = gr.Textbox(
label="Documentation Focus (optional)",
placeholder="e.g., 'hooks', 'data loading', 'transforms'",
info="Specific topic within the library to focus on",
)
with gr.Column(scale=1):
with gr.Accordion("Advanced Settings", open=False):
model_choices_ui = [
(m["label"], m["value"]) for m in AVAILABLE_MODELS
]
default_model_value = next(
(
m["value"]
for m in AVAILABLE_MODELS
if "nano" in m["value"].lower()
),
AVAILABLE_MODELS[0]["value"],
)
model_choice = gr.Dropdown(
choices=model_choices_ui,
value=default_model_value,
label="Model Selection",
info="Select AI model for generation",
allow_custom_value=True,
)
topic_number = gr.Slider(
label="Number of Topics",
minimum=2,
maximum=20,
step=1,
value=2,
)
cards_per_topic = gr.Slider(
label="Cards per Topic",
minimum=2,
maximum=30,
step=1,
value=3,
)
preference_prompt = gr.Textbox(
label="Learning Preferences",
placeholder="e.g., 'Beginner focus'",
lines=3,
)
generate_cloze_checkbox = gr.Checkbox(
label="Generate Cloze Cards (Experimental)",
value=False,
)
gr.Markdown(
"*Cards are generated by the subject expert agent with a quick self-review to catch obvious gaps.*"
)
generate_button = gr.Button("Generate Cards", variant="primary")
with gr.Group() as cards_output:
gr.Markdown("### Generated Cards")
with gr.Accordion("Output Format", open=False):
gr.Markdown(
"Cards: Index, Topic, Type, Q, A, Explanation, Example, Prerequisites, Outcomes, Difficulty. Export: CSV, .apkg",
)
with gr.Accordion("Example Card Format", open=False):
gr.Code(
label="Example Card",
value='{"front": ..., "back": ..., "metadata": ...}',
language="json",
)
output = gr.DataFrame(
value=example_data,
headers=[
"Index",
"Topic",
"Card_Type",
"Question",
"Answer",
"Explanation",
"Example",
"Prerequisites",
"Learning_Outcomes",
"Difficulty",
],
datatype=[
"number",
"str",
"str",
"str",
"str",
"str",
"str",
"str",
"str",
"str",
],
interactive=True,
elem_classes="tall-dataframe",
wrap=True,
column_widths=[
50,
100,
80,
200,
200,
250,
200,
150,
150,
100,
],
)
total_cards_html = gr.HTML(
value="<div><b>Total Cards Generated:</b> <span id='total-cards-count'>0</span></div>",
visible=False,
)
# Token usage display
token_usage_html = gr.HTML(
value="<div style='margin-top: 8px;'><b>Token Usage:</b> <span id='token-usage-display'>No usage data</span></div>",
visible=True,
)
# Export buttons
with gr.Row(elem_classes="export-group"):
export_csv_button = gr.Button("Export to CSV")
export_apkg_button = gr.Button("Export to .apkg")
download_file_output = gr.File(label="Download Deck", visible=False)
# --- Event Handlers --- (Updated to use functions from ankigen_core)
generation_mode.change(
fn=update_mode_visibility,
inputs=[
generation_mode,
subject,
],
outputs=[
subject_mode,
cards_output,
subject,
output,
total_cards_html,
],
)
# Define an async wrapper for the orchestrate_card_generation
async def handle_generate_click(
api_key_input_val,
subject_val,
generation_mode_val,
model_choice_val,
topic_number_val,
cards_per_topic_val,
preference_prompt_val,
generate_cloze_checkbox_val,
library_name_val,
library_topic_val,
progress=gr.Progress(track_tqdm=True),
):
return await orchestrate_card_generation(
client_manager,
response_cache,
api_key_input_val,
subject_val,
generation_mode_val,
"", # source_text - deprecated
"", # url_input - deprecated
model_choice_val,
topic_number_val,
cards_per_topic_val,
preference_prompt_val,
generate_cloze_checkbox_val,
library_name=library_name_val if library_name_val else None,
library_topic=library_topic_val if library_topic_val else None,
)
generate_button.click(
fn=handle_generate_click,
inputs=[
api_key_input,
subject,
generation_mode,
model_choice,
topic_number,
cards_per_topic,
preference_prompt,
generate_cloze_checkbox,
library_name_input,
library_topic_input,
],
outputs=[output, total_cards_html, token_usage_html],
show_progress="full",
)
# Define handler for CSV export (similar to APKG)
async def handle_export_dataframe_to_csv_click(df: pd.DataFrame):
if df is None or df.empty:
gr.Warning("No cards generated to export to CSV.")
return gr.update(value=None, visible=False)
try:
# export_dataframe_to_csv from exporters.py returns a relative path
# or a filename if no path was part of its input.
# It already handles None input for filename_suggestion.
exported_path_relative = await asyncio.to_thread(
export_dataframe_to_csv,
df,
filename_suggestion="ankigen_cards.csv",
)
if exported_path_relative:
exported_path_absolute = os.path.abspath(exported_path_relative)
gr.Info(
f"CSV ready for download: {os.path.basename(exported_path_absolute)}",
)
return gr.update(value=exported_path_absolute, visible=True)
# This case might happen if export_dataframe_to_csv itself had an internal issue
# and returned None, though it typically raises an error or returns path.
gr.Warning("CSV export failed or returned no path.")
return gr.update(value=None, visible=False)
except Exception as e:
logger.error(
f"Error exporting DataFrame to CSV: {e}",
exc_info=True,
)
gr.Error(f"Failed to export to CSV: {e!s}")
return gr.update(value=None, visible=False)
export_csv_button.click(
fn=handle_export_dataframe_to_csv_click, # Use the new handler
inputs=[output],
outputs=[download_file_output],
api_name="export_main_to_csv",
)
# Define handler for APKG export from DataFrame (Item 5)
async def handle_export_dataframe_to_apkg_click(
df: pd.DataFrame,
subject_for_deck_name: str,
):
if df is None or df.empty:
gr.Warning("No cards generated to export.")
return gr.update(value=None, visible=False)
timestamp_for_name = datetime.now().strftime("%Y%m%d_%H%M%S")
deck_name_inside_anki = (
"AnkiGen Exported Deck" # Default name inside Anki
)
if subject_for_deck_name and subject_for_deck_name.strip():
clean_subject = re.sub(
r"[^a-zA-Z0-9\s_.-]",
"",
subject_for_deck_name.strip(),
)
deck_name_inside_anki = f"AnkiGen - {clean_subject}"
elif not df.empty and "Topic" in df.columns and df["Topic"].iloc[0]:
first_topic = df["Topic"].iloc[0]
clean_first_topic = re.sub(
r"[^a-zA-Z0-9\s_.-]",
"",
str(first_topic).strip(),
)
deck_name_inside_anki = f"AnkiGen - {clean_first_topic}"
else:
deck_name_inside_anki = f"AnkiGen Deck - {timestamp_for_name}" # Fallback with timestamp
# Construct the output filename and path
# Use the deck_name_inside_anki for the base of the filename for consistency
base_filename = re.sub(r"[^a-zA-Z0-9_.-]", "_", deck_name_inside_anki)
output_filename = f"{base_filename}_{timestamp_for_name}.apkg"
output_dir = "output_decks" # As defined in export_dataframe_to_apkg
os.makedirs(output_dir, exist_ok=True) # Ensure directory exists
full_output_path = os.path.join(output_dir, output_filename)
try:
# Call export_dataframe_to_apkg with correct arguments:
# 1. df (DataFrame)
# 2. output_path (full path for the .apkg file)
# 3. deck_name (name of the deck inside Anki)
exported_path_relative = await asyncio.to_thread(
export_dataframe_to_apkg,
df,
full_output_path, # Pass the constructed full output path
deck_name_inside_anki, # This is the name for the deck inside the .apkg file
)
# export_dataframe_to_apkg returns the actual path it used, which should match full_output_path
exported_path_absolute = os.path.abspath(exported_path_relative)
gr.Info(
f"Successfully exported deck '{deck_name_inside_anki}' to {exported_path_absolute}",
)
return gr.update(value=exported_path_absolute, visible=True)
except Exception as e:
logger.error(
f"Error exporting DataFrame to APKG: {e}",
exc_info=True,
)
gr.Error(f"Failed to export to APKG: {e!s}")
return gr.update(value=None, visible=False)
# Wire button to handler (Item 6)
export_apkg_button.click(
fn=handle_export_dataframe_to_apkg_click,
inputs=[output, subject], # Added subject as input
outputs=[download_file_output],
api_name="export_main_to_apkg",
)
# Auto-fill handler
async def handle_auto_fill_click(
subject_text: str,
api_key: str,
progress=gr.Progress(track_tqdm=True),
):
"""Handle auto-fill button click to populate all settings"""
if not subject_text or not subject_text.strip():
gr.Warning("Please enter a subject first")
return [gr.update()] * 8 # Return no updates for all outputs
if not api_key:
gr.Warning("OpenAI API key is required for auto-configuration")
return [gr.update()] * 8
try:
progress(0, desc="Analyzing subject...")
# Initialize OpenAI client
await client_manager.initialize_client(api_key)
openai_client = client_manager.get_client()
# Get auto-configuration
auto_config_service = AutoConfigService()
config = await auto_config_service.auto_configure(
subject_text, openai_client
)
if not config:
gr.Warning("Could not generate configuration")
return [gr.update()] * 8
# Return updates for all relevant UI components
return (
gr.update(
value=config.get("library_name", "")
), # library_name_input
gr.update(
value=config.get("library_topic", "")
), # library_topic_input
gr.update(value=config.get("topic_number", 3)), # topic_number
gr.update(
value=config.get("cards_per_topic", 5)
), # cards_per_topic
gr.update(
value=config.get("preference_prompt", "")
), # preference_prompt
gr.update(
value=config.get("generate_cloze_checkbox", False)
), # generate_cloze_checkbox
gr.update(
value=config.get("model_choice", "gpt-4.1-nano")
), # model_choice
gr.update(
open=True
), # Open the Library Documentation accordion
)
except Exception as e:
logger.error(f"Auto-configuration failed: {e}", exc_info=True)
gr.Error(f"Auto-configuration failed: {str(e)}")
return [gr.update()] * 8
auto_fill_btn.click(
fn=handle_auto_fill_click,
inputs=[subject, api_key_input],
outputs=[
library_name_input,
library_topic_input,
topic_number,
cards_per_topic,
preference_prompt,
generate_cloze_checkbox,
model_choice,
library_accordion,
],
)
logger.info("AnkiGen Gradio interface creation complete.")
return ankigen
# --- Main Execution --- (Runs if script is executed directly)
if __name__ == "__main__":
import os
from packaging import version
try:
# Detect Gradio version for API compatibility
gradio_version = version.parse(gr.__version__)
is_gradio_6 = gradio_version >= version.parse("5.0.0")
logger.info(
f"Detected Gradio version: {gr.__version__} (v6 API: {is_gradio_6})"
)
if is_gradio_6:
# Gradio 6.x: theme/css/js go in launch()
ankigen_interface = create_ankigen_interface()
launch_kwargs = {
"theme": custom_theme,
"css": custom_css,
"js": js_storage,
}
else:
# Gradio 4.x: theme/css/js go in Blocks()
ankigen_interface = create_ankigen_interface(
theme=custom_theme,
css=custom_css,
js=js_storage,
)
launch_kwargs = {}
logger.info("Launching AnkiGen Gradio interface...")
if os.environ.get("SPACE_ID"): # On HuggingFace Spaces
ankigen_interface.queue(default_concurrency_limit=2, max_size=10).launch(
**launch_kwargs
)
else: # Local development
ankigen_interface.queue(default_concurrency_limit=2, max_size=10).launch(
server_name="127.0.0.1", share=False, **launch_kwargs
)
except Exception as e:
logger.critical(f"Failed to launch Gradio interface: {e}", exc_info=True)
|