Spaces:
Sleeping
Sleeping
File size: 10,888 Bytes
430a9bd 3aa40bc 430a9bd 098c670 3aa40bc 4a45db6 a058939 7dc6a2c 430a9bd 830715d 098c670 a69bc3b 430a9bd 3aa40bc bc16436 3aa40bc 430a9bd 4a45db6 430a9bd 7dc6a2c 430a9bd 7dc6a2c 4a45db6 15033cb a058939 15033cb a058939 a13e6db 430a9bd a058939 15033cb 4a45db6 15033cb 4a45db6 15033cb 430a9bd 7dc6a2c 430a9bd a058939 3aa40bc a058939 3aa40bc a058939 4f97b8a a058939 4f97b8a a058939 4f97b8a a058939 4f97b8a a058939 4f97b8a a058939 4f97b8a a058939 4f97b8a a058939 4f97b8a a058939 4f97b8a a058939 4f97b8a a058939 4f97b8a a058939 4f97b8a a058939 4f97b8a a058939 4f97b8a a058939 a69bc3b 430a9bd 3aa40bc 430a9bd 4a45db6 a13e6db 4a45db6 3aa40bc a13e6db 3aa40bc bc16436 3aa40bc a69bc3b 3aa40bc 430a9bd 3aa40bc 430a9bd 3aa40bc 430a9bd 3aa40bc 430a9bd 3aa40bc a058939 3aa40bc 430a9bd 3aa40bc 430a9bd 3aa40bc 430a9bd 3aa40bc 430a9bd 3aa40bc 430a9bd 3aa40bc 430a9bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
import os
import feedparser
from langchain.vectorstores import Chroma
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.docstore.document import Document
import logging
from huggingface_hub import HfApi, login, snapshot_download
import shutil
import rss_feeds
from datetime import datetime, date
import dateutil.parser
import hashlib
import re
# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Constants
MAX_ARTICLES_PER_FEED = 10
RSS_FEEDS = rss_feeds.RSS_FEEDS
COLLECTION_NAME = "news_articles"
HF_API_TOKEN = os.getenv("DEMO_HF_API_TOKEN", "YOUR_HF_API_TOKEN")
REPO_ID = "broadfield-dev/news-rag-db"
# Initialize Hugging Face API
login(token=HF_API_TOKEN)
hf_api = HfApi()
def get_embedding_model():
"""Returns a singleton instance of the embedding model to avoid reloading."""
if not hasattr(get_embedding_model, "model"):
get_embedding_model.model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
return get_embedding_model.model
def get_daily_db_dir():
"""Returns the path for today's Chroma DB."""
return f"chroma_db_{date.today().isoformat()}"
def clean_text(text):
"""Clean text by removing HTML tags and extra whitespace."""
if not text or not isinstance(text, str):
return ""
text = re.sub(r'<.*?>', '', text)
text = ' '.join(text.split())
return text.strip().lower()
def fetch_rss_feeds():
articles = []
seen_keys = set()
for feed_url in RSS_FEEDS:
try:
logger.info(f"Fetching {feed_url}")
feed = feedparser.parse(feed_url)
if feed.bozo:
logger.warning(f"Parse error for {feed_url}: {feed.bozo_exception}")
continue
article_count = 0
for entry in feed.entries:
if article_count >= MAX_ARTICLES_PER_FEED:
break
title = entry.get("title", "No Title")
link = entry.get("link", "")
description = entry.get("summary", entry.get("description", ""))
title = clean_text(title)
link = clean_text(link)
description = clean_text(description)
published = "Unknown Date"
for date_field in ["published", "updated", "created", "pubDate"]:
if date_field in entry:
try:
parsed_date = dateutil.parser.parse(entry[date_field])
published = parsed_date.strftime("%Y-%m-%d %H:%M:%S")
break
except (ValueError, TypeError) as e:
logger.debug(f"Failed to parse {date_field} '{entry[date_field]}': {e}")
continue
description_hash = hashlib.sha256(description.encode('utf-8')).hexdigest()
key = f"{title}|{link}|{published}|{description_hash}"
if key not in seen_keys:
seen_keys.add(key)
image = "svg"
for img_source in [
lambda e: clean_text(e.get("media_content", [{}])[0].get("url")) if e.get("media_content") else "",
lambda e: clean_text(e.get("media_thumbnail", [{}])[0].get("url")) if e.get("media_thumbnail") else "",
lambda e: clean_text(e.get("enclosure", {}).get("url")) if e.get("enclosure") else "",
lambda e: clean_text(next((lnk.get("href") for lnk in e.get("links", []) if lnk.get("type", "").startswith("image")), "")),
]:
try:
img = img_source(entry)
if img and img.strip():
image = img
break
except (IndexError, AttributeError, TypeError):
continue
articles.append({
"title": title,
"link": link,
"description": description,
"published": published,
"category": categorize_feed(feed_url),
"image": image,
})
article_count += 1
except Exception as e:
logger.error(f"Error fetching {feed_url}: {e}")
logger.info(f"Total articles fetched: {len(articles)}")
return articles
def categorize_feed(url):
"""Categorize an RSS feed based on its URL."""
if not url or not isinstance(url, str):
logger.warning(f"Invalid URL provided for categorization: {url}")
return "Uncategorized"
url = url.lower().strip()
logger.debug(f"Categorizing URL: {url}")
if any(keyword in url for keyword in ["nature", "science.org", "arxiv.org", "plos.org", "annualreviews.org", "journals.uchicago.edu", "jneurosci.org", "cell.com", "nejm.org", "lancet.com"]):
return "Academic Papers"
elif any(keyword in url for keyword in ["reuters.com/business", "bloomberg.com", "ft.com", "marketwatch.com", "cnbc.com", "foxbusiness.com", "wsj.com", "bworldonline.com", "economist.com", "forbes.com"]):
return "Business"
elif any(keyword in url for keyword in ["investing.com", "cnbc.com/market", "marketwatch.com/market", "fool.co.uk", "zacks.com", "seekingalpha.com", "barrons.com", "yahoofinance.com"]):
return "Stocks & Markets"
elif any(keyword in url for keyword in ["whitehouse.gov", "state.gov", "commerce.gov", "transportation.gov", "ed.gov", "dol.gov", "justice.gov", "federalreserve.gov", "occ.gov", "sec.gov", "bls.gov", "usda.gov", "gao.gov", "cbo.gov", "fema.gov", "defense.gov", "hhs.gov", "energy.gov", "interior.gov"]):
return "Federal Government"
elif any(keyword in url for keyword in ["weather.gov", "metoffice.gov.uk", "accuweather.com", "weatherunderground.com", "noaa.gov", "wunderground.com", "climate.gov", "ecmwf.int", "bom.gov.au"]):
return "Weather"
elif any(keyword in url for keyword in ["data.worldbank.org", "imf.org", "un.org", "oecd.org", "statista.com", "kff.org", "who.int", "cdc.gov", "bea.gov", "census.gov", "fdic.gov"]):
return "Data & Statistics"
elif any(keyword in url for keyword in ["nasa", "spaceweatherlive", "space", "universetoday", "skyandtelescope", "esa"]):
return "Space"
elif any(keyword in url for keyword in ["sciencedaily", "quantamagazine", "smithsonianmag", "popsci", "discovermagazine", "scientificamerican", "newscientist", "livescience", "atlasobscura"]):
return "Science"
elif any(keyword in url for keyword in ["wired", "techcrunch", "arstechnica", "gizmodo", "theverge"]):
return "Tech"
elif any(keyword in url for keyword in ["horoscope", "astrostyle"]):
return "Astrology"
elif any(keyword in url for keyword in ["cnn_allpolitics", "bbci.co.uk/news/politics", "reuters.com/arc/outboundfeeds/newsletter-politics", "politico.com/rss/politics", "thehill"]):
return "Politics"
elif any(keyword in url for keyword in ["weather", "swpc.noaa.gov", "foxweather"]):
return "Earth Weather"
elif "vogue" in url:
return "Lifestyle"
elif any(keyword in url for keyword in ["phys.org", "aps.org", "physicsworld"]):
return "Physics"
else:
logger.warning(f"No matching category found for URL: {url}")
return "Uncategorized"
def process_and_store_articles(articles):
db_path = get_daily_db_dir()
vector_db = Chroma(
persist_directory=db_path,
embedding_function=get_embedding_model(),
collection_name=COLLECTION_NAME
)
try:
existing_ids = set(vector_db.get(include=[])["ids"])
except Exception:
existing_ids = set()
docs_to_add = []
ids_to_add = []
for article in articles:
try:
title = clean_text(article["title"])
link = clean_text(article["link"])
description = clean_text(article["description"])
published = article["published"]
description_hash = hashlib.sha256(description.encode('utf-8')).hexdigest()
doc_id = f"{title}|{link}|{published}|{description_hash}"
if doc_id in existing_ids:
logger.debug(f"Skipping duplicate in DB {db_path}: {doc_id}")
continue
metadata = {
"title": article["title"],
"link": article["link"],
"original_description": article["description"],
"published": article["published"],
"category": article["category"],
"image": article["image"],
}
doc = Document(page_content=description, metadata=metadata)
docs_to_add.append(doc)
ids_to_add.append(doc_id)
existing_ids.add(doc_id)
except Exception as e:
logger.error(f"Error processing article {article.get('title', 'N/A')}: {e}")
if docs_to_add:
try:
vector_db.add_documents(documents=docs_to_add, ids=ids_to_add)
vector_db.persist()
logger.info(f"Added {len(docs_to_add)} new articles to DB {db_path}. Total in DB: {vector_db._collection.count()}")
except Exception as e:
logger.error(f"Error storing articles in {db_path}: {e}")
def download_from_hf_hub():
try:
hf_api.create_repo(repo_id=REPO_ID, repo_type="dataset", exist_ok=True, token=HF_API_TOKEN)
logger.info(f"Downloading all DBs from {REPO_ID}...")
snapshot_download(
repo_id=REPO_ID,
repo_type="dataset",
local_dir=".",
local_dir_use_symlinks=False,
allow_patterns="chroma_db_*/**",
token=HF_API_TOKEN
)
logger.info("Finished downloading DBs.")
except Exception as e:
logger.error(f"Error downloading from Hugging Face Hub: {e}")
def upload_to_hf_hub():
db_path = get_daily_db_dir()
if os.path.exists(db_path):
try:
logger.info(f"Uploading updated Chroma DB '{db_path}' to {REPO_ID}...")
hf_api.upload_folder(
folder_path=db_path,
path_in_repo=db_path,
repo_id=REPO_ID,
repo_type="dataset",
token=HF_API_TOKEN
)
logger.info(f"Database folder '{db_path}' uploaded to: {REPO_ID}")
except Exception as e:
logger.error(f"Error uploading to Hugging Face Hub: {e}")
if __name__ == "__main__":
download_from_hf_hub()
articles = fetch_rss_feeds()
process_and_store_articles(articles)
upload_to_hf_hub() |