File size: 6,584 Bytes
cf10c85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import os
import feedparser
from langchain.vectorstores import Chroma
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.docstore.document import Document
import logging
from huggingface_hub import HfApi, login, snapshot_download
import shutil
import json
from datetime import datetime
import dateutil.parser
import hashlib
import re

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

LOCAL_DB_DIR = "chroma_db"
COLLECTION_NAME = "news_articles"
HF_API_TOKEN = os.getenv("DEMO_HF_API_TOKEN", "YOUR_HF_API_TOKEN")
REPO_ID = "broadfield-dev/news-rag-db"
FEEDS_FILE = "rss_feeds.json"

login(token=HF_API_TOKEN)
hf_api = HfApi()

def get_embedding_model():
    if not hasattr(get_embedding_model, "model"):
        get_embedding_model.model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
    return get_embedding_model.model

def clean_text(text):
    if not text or not isinstance(text, str):
        return ""
    text = re.sub(r'<.*?>', '', text)
    text = ' '.join(text.split())
    return text.strip().lower()

def fetch_rss_feeds():
    articles = []
    seen_keys = set()
    
    try:
        with open(FEEDS_FILE, 'r') as f:
            feed_categories = json.load(f)
    except FileNotFoundError:
        logger.error(f"{FEEDS_FILE} not found. No feeds to process.")
        return []

    for category, feeds in feed_categories.items():
        for feed_info in feeds:
            feed_url = feed_info.get("url")
            if not feed_url:
                continue

            try:
                logger.info(f"Fetching '{feed_info.get('name', feed_url)}' from category '{category}'")
                # Add a User-Agent to prevent getting blocked
                feed = feedparser.parse(feed_url, agent="RSSNewsBot/1.0 (+http://huggingface.co/spaces/broadfield-dev/RSS_News)")

                if feed.bozo:
                    logger.warning(f"Parse error for {feed_url}: {feed.bozo_exception}")
                    continue
                
                for entry in feed.entries[:10]: # Process max 10 entries per feed
                    title = entry.get("title", "No Title")
                    link = entry.get("link", "")
                    description = entry.get("summary", entry.get("description", ""))
                    
                    cleaned_title = clean_text(title)
                    cleaned_link = clean_text(link)
                    
                    published = "Unknown Date"
                    for date_field in ["published", "updated", "created", "pubDate"]:
                        if date_field in entry:
                            try:
                                parsed_date = dateutil.parser.parse(entry[date_field])
                                published = parsed_date.strftime("%Y-%m-%d %H:%M:%S")
                                break
                            except (ValueError, TypeError):
                                continue

                    key = f"{cleaned_title}|{cleaned_link}|{published}"
                    if key not in seen_keys:
                        seen_keys.add(key)
                        image = "svg"
                        if 'media_content' in entry and entry.media_content:
                            image = entry.media_content[0].get('url', 'svg')
                        elif 'media_thumbnail' in entry and entry.media_thumbnail:
                            image = entry.media_thumbnail[0].get('url', 'svg')

                        articles.append({
                            "title": title,
                            "link": link,
                            "description": description,
                            "published": published,
                            "category": category, # Directly use category from JSON
                            "image": image,
                        })
            except Exception as e:
                logger.error(f"Error fetching {feed_url}: {e}")

    logger.info(f"Total articles fetched: {len(articles)}")
    return articles

def process_and_store_articles(articles):
    vector_db = Chroma(
        persist_directory=LOCAL_DB_DIR,
        embedding_function=get_embedding_model(),
        collection_name=COLLECTION_NAME
    )
    
    try:
        existing_ids = set(vector_db.get(include=[])["ids"])
    except Exception:
        existing_ids = set()

    docs_to_add = []
    ids_to_add = []
    
    for article in articles:
        cleaned_title = clean_text(article["title"])
        cleaned_link = clean_text(article["link"])
        doc_id = f"{cleaned_title}|{cleaned_link}|{article['published']}"
        
        if doc_id in existing_ids:
            continue

        metadata = {
            "title": article["title"],
            "link": article["link"],
            "original_description": article["description"],
            "published": article["published"],
            "category": article["category"],
            "image": article["image"],
        }
        doc = Document(page_content=clean_text(article["description"]), metadata=metadata)
        docs_to_add.append(doc)
        ids_to_add.append(doc_id)
        existing_ids.add(doc_id)
    
    if docs_to_add:
        vector_db.add_documents(documents=docs_to_add, ids=ids_to_add)
        vector_db.persist()
        logger.info(f"Added {len(docs_to_add)} new articles to DB. Total in DB: {vector_db._collection.count()}")

def download_from_hf_hub():
    if not os.path.exists(LOCAL_DB_DIR):
        try:
            snapshot_download(
                repo_id=REPO_ID,
                repo_type="dataset",
                local_dir=".",
                local_dir_use_symlinks=False,
                allow_patterns=f"{LOCAL_DB_DIR}/**",
                token=HF_API_TOKEN
            )
        except Exception as e:
            logger.warning(f"Could not download DB from Hub (this is normal on first run): {e}")

def upload_to_hf_hub():
    if os.path.exists(LOCAL_DB_DIR):
        try:
            hf_api.upload_folder(
                folder_path=LOCAL_DB_DIR,
                path_in_repo=LOCAL_DB_DIR,
                repo_id=REPO_ID,
                repo_type="dataset",
                token=HF_API_TOKEN,
                commit_message="Update RSS news database"
            )
        except Exception as e:
            logger.error(f"Error uploading to Hugging Face Hub: {e}")

if __name__ == "__main__":
    download_from_hf_hub()
    articles = fetch_rss_feeds()
    if articles:
        process_and_store_articles(articles)
        upload_to_hf_hub()