RSS_News_1 / rss_processor.py
broadfield-dev's picture
Update rss_processor.py
739c95c verified
raw
history blame
11.8 kB
import os
import feedparser
from langchain.vectorstores import Chroma
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.docstore.document import Document
import logging
from huggingface_hub import HfApi, login, snapshot_download
from huggingface_hub.utils import HfHubHTTPError
import json
from datetime import datetime
import dateutil.parser
import hashlib
import re
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
MAX_ARTICLES_PER_FEED = 1000
LOCAL_DB_DIR = "chroma_db"
FEEDS_FILE = "rss_feeds.json"
COLLECTION_NAME = "news_articles"
HF_API_TOKEN = os.getenv("HF_TOKEN")
REPO_ID = "broadfield-dev/news-rag-db"
if not HF_API_TOKEN:
raise ValueError("HF_TOKEN environment variable not set.")
login(token=HF_API_TOKEN)
hf_api = HfApi()
embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
vector_db = None
def clean_text(text):
if not text or not isinstance(text, str):
return ""
text = re.sub(r'<.*?>', '', text)
text = ' '.join(text.split())
return text.strip().lower()
def fetch_rss_feeds():
articles = []
seen_keys = set()
try:
with open(FEEDS_FILE, 'r') as f:
feed_categories = json.load(f)
except FileNotFoundError:
logger.error(f"{FEEDS_FILE} not found. No feeds to process.")
return []
for category, feeds in feed_categories.items():
for feed_info in feeds:
feed_url = feed_info.get("url")
if not feed_url:
logger.warning(f"Skipping feed with no URL in category '{category}'")
continue
try:
logger.info(f"Fetching {feed_url}")
feed = feedparser.parse(feed_url)
if feed.bozo:
logger.warning(f"Parse error for {feed_url}: {feed.bozo_exception}")
continue
article_count = 0
for entry in feed.entries:
if article_count >= MAX_ARTICLES_PER_FEED:
break
title_raw = entry.get("title", "No Title")
link = entry.get("link", "")
description = entry.get("summary", entry.get("description", ""))
clean_title_val = clean_text(title_raw)
clean_desc_val = clean_text(description)
if not clean_desc_val:
continue
published = "Unknown Date"
for date_field in ["published", "updated", "created", "pubDate"]:
if date_field in entry:
try:
parsed_date = dateutil.parser.parse(entry[date_field])
published = parsed_date.strftime("%Y-%m-%d %H:%M:%S")
break
except (ValueError, TypeError):
continue
description_hash = hashlib.sha256(clean_desc_val.encode('utf-8')).hexdigest()
key = f"{clean_title_val}|{link}|{published}|{description_hash}"
if key not in seen_keys:
seen_keys.add(key)
image = "svg"
for img_source in [
lambda e: e.get("media_content", [{}])[0].get("url") if e.get("media_content") else "",
lambda e: e.get("media_thumbnail", [{}])[0].get("url") if e.get("media_thumbnail") else "",
lambda e: e.get("enclosure", {}).get("url") if e.get("enclosure") else "",
lambda e: next((lnk.get("href") for lnk in e.get("links", []) if lnk.get("type", "").startswith("image")), ""),
]:
try:
img = img_source(entry)
if img and img.strip():
image = img
break
except (IndexError, AttributeError, TypeError):
continue
articles.append({
"title": title_raw,
"link": link,
"description": clean_desc_val,
"published": published,
"category": category,
"image": image,
})
article_count += 1
except Exception as e:
logger.error(f"Error fetching {feed_url}: {e}")
logger.info(f"Total unique articles fetched: {len(articles)}")
return articles
def categorize_feed(url):
if not url or not isinstance(url, str):
logger.warning(f"Invalid URL provided for categorization: {url}")
return "Uncategorized"
url = url.lower().strip()
logger.debug(f"Categorizing URL: {url}")
if any(keyword in url for keyword in ["nature", "science.org", "arxiv.org", "plos.org", "annualreviews.org", "journals.uchicago.edu", "jneurosci.org", "cell.com", "nejm.org", "lancet.com"]):
return "Academic Papers"
elif any(keyword in url for keyword in ["reuters.com/business", "bloomberg.com", "ft.com", "marketwatch.com", "cnbc.com", "foxbusiness.com", "wsj.com", "bworldonline.com", "economist.com", "forbes.com"]):
return "Business"
elif any(keyword in url for keyword in ["investing.com", "cnbc.com/market", "marketwatch.com/market", "fool.co.uk", "zacks.com", "seekingalpha.com", "barrons.com", "yahoofinance.com"]):
return "Stocks & Markets"
elif any(keyword in url for keyword in ["whitehouse.gov", "state.gov", "commerce.gov", "transportation.gov", "ed.gov", "dol.gov", "justice.gov", "federalreserve.gov", "occ.gov", "sec.gov", "bls.gov", "usda.gov", "gao.gov", "cbo.gov", "fema.gov", "defense.gov", "hhs.gov", "energy.gov", "interior.gov"]):
return "Federal Government"
elif any(keyword in url for keyword in ["weather.gov", "metoffice.gov.uk", "accuweather.com", "weatherunderground.com", "noaa.gov", "wunderground.com", "climate.gov", "ecmwf.int", "bom.gov.au"]):
return "Weather"
elif any(keyword in url for keyword in ["data.worldbank.org", "imf.org", "un.org", "oecd.org", "statista.com", "kff.org", "who.int", "cdc.gov", "bea.gov", "census.gov", "fdic.gov"]):
return "Data & Statistics"
elif any(keyword in url for keyword in ["nasa", "spaceweatherlive", "space", "universetoday", "skyandtelescope", "esa"]):
return "Space"
elif any(keyword in url for keyword in ["sciencedaily", "quantamagazine", "smithsonianmag", "popsci", "discovermagazine", "scientificamerican", "newscientist", "livescience", "atlasobscura"]):
return "Science"
elif any(keyword in url for keyword in ["wired", "techcrunch", "arstechnica", "gizmodo", "theverge"]):
return "Tech"
elif any(keyword in url for keyword in ["horoscope", "astrostyle"]):
return "Astrology"
elif any(keyword in url for keyword in ["cnn_allpolitics", "bbci.co.uk/news/politics", "reuters.com/arc/outboundfeeds/newsletter-politics", "politico.com/rss/politics", "thehill"]):
return "Politics"
elif any(keyword in url for keyword in ["weather", "swpc.noaa.gov", "foxweather"]):
return "Earth Weather"
elif "vogue" in url:
return "Lifestyle"
elif any(keyword in url for keyword in ["phys.org", "aps.org", "physicsworld"]):
return "Physics"
else:
logger.warning(f"No matching category found for URL: {url}")
return "Uncategorized"
def process_and_store_articles(articles):
if not vector_db:
logger.error("Vector database is not initialized. Cannot process articles.")
return
documents = []
doc_ids = []
try:
existing_ids = set(vector_db.get(include=[])["ids"])
logger.info(f"Found {len(existing_ids)} existing document IDs in the database.")
except Exception:
existing_ids = set()
logger.info("No existing documents found or error retrieving them. Starting fresh.")
for article in articles:
try:
title = clean_text(article["title"])
link = article["link"]
description = article["description"]
published = article["published"]
description_hash = hashlib.sha256(description.encode('utf-8')).hexdigest()
doc_id = f"{title}|{link}|{published}|{description_hash}"
if doc_id in existing_ids:
continue
metadata = {
"title": article["title"],
"link": article["link"],
"published": article["published"],
"category": article["category"],
"image": article["image"],
}
doc = Document(page_content=description, metadata=metadata)
documents.append(doc)
doc_ids.append(doc_id)
existing_ids.add(doc_id)
except Exception as e:
logger.error(f"Error processing article {article['title']}: {e}")
if documents:
try:
vector_db.add_documents(documents=documents, ids=doc_ids)
vector_db.persist()
logger.info(f"Added {len(documents)} new articles to DB. Total documents now: {len(vector_db.get()['ids'])}")
except Exception as e:
logger.error(f"Error storing articles: {e}")
else:
logger.info("No new articles to add.")
def download_from_hf_hub():
if os.path.exists(LOCAL_DB_DIR):
logger.info(f"Local database directory '{LOCAL_DB_DIR}' already exists. Skipping download.")
return
logger.info(f"Attempting to download database from Hugging Face Hub repo: {REPO_ID}")
try:
snapshot_download(
repo_id=REPO_ID,
repo_type="dataset",
local_dir=LOCAL_DB_DIR,
token=HF_API_TOKEN,
)
logger.info(f"Database successfully downloaded to '{LOCAL_DB_DIR}'.")
except HfHubHTTPError as e:
logger.warning(f"Failed to download from Hub (repo may be new or empty): {e}. Building new dataset locally.")
os.makedirs(LOCAL_DB_DIR, exist_ok=True)
except Exception as e:
logger.error(f"An unexpected error occurred during download: {e}. Creating new local directory.")
os.makedirs(LOCAL_DB_DIR, exist_ok=True)
def upload_to_hf_hub():
if not os.path.exists(LOCAL_DB_DIR):
logger.warning(f"Local database directory '{LOCAL_DB_DIR}' not found. Nothing to upload.")
return
try:
hf_api.create_repo(repo_id=REPO_ID, repo_type="dataset", exist_ok=True)
logger.info(f"Uploading updated Chroma DB to {REPO_ID}...")
hf_api.upload_folder(
folder_path=LOCAL_DB_DIR,
repo_id=REPO_ID,
repo_type="dataset",
commit_message=f"Update database - {datetime.now().isoformat()}"
)
logger.info(f"Database uploaded successfully to Hugging Face Hub.")
except Exception as e:
logger.error(f"Error uploading to Hugging Face Hub: {e}")
if __name__ == "__main__":
download_from_hf_hub()
global vector_db
vector_db = Chroma(
persist_directory=LOCAL_DB_DIR,
embedding_function=embedding_model,
collection_name=COLLECTION_NAME
)
articles = fetch_rss_feeds()
if articles:
process_and_store_articles(articles)
upload_to_hf_hub()
logger.info("Script finished.")