Spaces:
Sleeping
Sleeping
File size: 11,840 Bytes
cf10c85 38db139 cf10c85 739c95c cf10c85 38db139 cf10c85 739c95c 7e1ea76 cf10c85 3bdc160 739c95c 38db139 739c95c cf10c85 7e1ea76 739c95c cf10c85 739c95c cf10c85 7e1ea76 cf10c85 7e1ea76 cf10c85 739c95c cf10c85 739c95c cf10c85 739c95c 38db139 7e1ea76 cf10c85 38db139 cf10c85 739c95c 38db139 cf10c85 739c95c cf10c85 739c95c cf10c85 739c95c cf10c85 38db139 739c95c cf10c85 739c95c cf10c85 739c95c 38db139 cf10c85 739c95c 38db139 739c95c 38db139 739c95c cf10c85 7e1ea76 38db139 739c95c 7e1ea76 739c95c 7e1ea76 38db139 7e1ea76 739c95c 7e1ea76 38db139 739c95c 7e1ea76 739c95c cf10c85 739c95c 7e1ea76 739c95c 7e1ea76 739c95c 7e1ea76 739c95c cf10c85 38db139 739c95c 38db139 739c95c 38db139 739c95c 38db139 739c95c 38db139 739c95c 38db139 739c95c cf10c85 38db139 739c95c 38db139 739c95c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
import os
import feedparser
from langchain.vectorstores import Chroma
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.docstore.document import Document
import logging
from huggingface_hub import HfApi, login, snapshot_download
from huggingface_hub.utils import HfHubHTTPError
import json
from datetime import datetime
import dateutil.parser
import hashlib
import re
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
MAX_ARTICLES_PER_FEED = 1000
LOCAL_DB_DIR = "chroma_db"
FEEDS_FILE = "rss_feeds.json"
COLLECTION_NAME = "news_articles"
HF_API_TOKEN = os.getenv("HF_TOKEN")
REPO_ID = "broadfield-dev/news-rag-db"
if not HF_API_TOKEN:
raise ValueError("HF_TOKEN environment variable not set.")
login(token=HF_API_TOKEN)
hf_api = HfApi()
embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
vector_db = None
def clean_text(text):
if not text or not isinstance(text, str):
return ""
text = re.sub(r'<.*?>', '', text)
text = ' '.join(text.split())
return text.strip().lower()
def fetch_rss_feeds():
articles = []
seen_keys = set()
try:
with open(FEEDS_FILE, 'r') as f:
feed_categories = json.load(f)
except FileNotFoundError:
logger.error(f"{FEEDS_FILE} not found. No feeds to process.")
return []
for category, feeds in feed_categories.items():
for feed_info in feeds:
feed_url = feed_info.get("url")
if not feed_url:
logger.warning(f"Skipping feed with no URL in category '{category}'")
continue
try:
logger.info(f"Fetching {feed_url}")
feed = feedparser.parse(feed_url)
if feed.bozo:
logger.warning(f"Parse error for {feed_url}: {feed.bozo_exception}")
continue
article_count = 0
for entry in feed.entries:
if article_count >= MAX_ARTICLES_PER_FEED:
break
title_raw = entry.get("title", "No Title")
link = entry.get("link", "")
description = entry.get("summary", entry.get("description", ""))
clean_title_val = clean_text(title_raw)
clean_desc_val = clean_text(description)
if not clean_desc_val:
continue
published = "Unknown Date"
for date_field in ["published", "updated", "created", "pubDate"]:
if date_field in entry:
try:
parsed_date = dateutil.parser.parse(entry[date_field])
published = parsed_date.strftime("%Y-%m-%d %H:%M:%S")
break
except (ValueError, TypeError):
continue
description_hash = hashlib.sha256(clean_desc_val.encode('utf-8')).hexdigest()
key = f"{clean_title_val}|{link}|{published}|{description_hash}"
if key not in seen_keys:
seen_keys.add(key)
image = "svg"
for img_source in [
lambda e: e.get("media_content", [{}])[0].get("url") if e.get("media_content") else "",
lambda e: e.get("media_thumbnail", [{}])[0].get("url") if e.get("media_thumbnail") else "",
lambda e: e.get("enclosure", {}).get("url") if e.get("enclosure") else "",
lambda e: next((lnk.get("href") for lnk in e.get("links", []) if lnk.get("type", "").startswith("image")), ""),
]:
try:
img = img_source(entry)
if img and img.strip():
image = img
break
except (IndexError, AttributeError, TypeError):
continue
articles.append({
"title": title_raw,
"link": link,
"description": clean_desc_val,
"published": published,
"category": category,
"image": image,
})
article_count += 1
except Exception as e:
logger.error(f"Error fetching {feed_url}: {e}")
logger.info(f"Total unique articles fetched: {len(articles)}")
return articles
def categorize_feed(url):
if not url or not isinstance(url, str):
logger.warning(f"Invalid URL provided for categorization: {url}")
return "Uncategorized"
url = url.lower().strip()
logger.debug(f"Categorizing URL: {url}")
if any(keyword in url for keyword in ["nature", "science.org", "arxiv.org", "plos.org", "annualreviews.org", "journals.uchicago.edu", "jneurosci.org", "cell.com", "nejm.org", "lancet.com"]):
return "Academic Papers"
elif any(keyword in url for keyword in ["reuters.com/business", "bloomberg.com", "ft.com", "marketwatch.com", "cnbc.com", "foxbusiness.com", "wsj.com", "bworldonline.com", "economist.com", "forbes.com"]):
return "Business"
elif any(keyword in url for keyword in ["investing.com", "cnbc.com/market", "marketwatch.com/market", "fool.co.uk", "zacks.com", "seekingalpha.com", "barrons.com", "yahoofinance.com"]):
return "Stocks & Markets"
elif any(keyword in url for keyword in ["whitehouse.gov", "state.gov", "commerce.gov", "transportation.gov", "ed.gov", "dol.gov", "justice.gov", "federalreserve.gov", "occ.gov", "sec.gov", "bls.gov", "usda.gov", "gao.gov", "cbo.gov", "fema.gov", "defense.gov", "hhs.gov", "energy.gov", "interior.gov"]):
return "Federal Government"
elif any(keyword in url for keyword in ["weather.gov", "metoffice.gov.uk", "accuweather.com", "weatherunderground.com", "noaa.gov", "wunderground.com", "climate.gov", "ecmwf.int", "bom.gov.au"]):
return "Weather"
elif any(keyword in url for keyword in ["data.worldbank.org", "imf.org", "un.org", "oecd.org", "statista.com", "kff.org", "who.int", "cdc.gov", "bea.gov", "census.gov", "fdic.gov"]):
return "Data & Statistics"
elif any(keyword in url for keyword in ["nasa", "spaceweatherlive", "space", "universetoday", "skyandtelescope", "esa"]):
return "Space"
elif any(keyword in url for keyword in ["sciencedaily", "quantamagazine", "smithsonianmag", "popsci", "discovermagazine", "scientificamerican", "newscientist", "livescience", "atlasobscura"]):
return "Science"
elif any(keyword in url for keyword in ["wired", "techcrunch", "arstechnica", "gizmodo", "theverge"]):
return "Tech"
elif any(keyword in url for keyword in ["horoscope", "astrostyle"]):
return "Astrology"
elif any(keyword in url for keyword in ["cnn_allpolitics", "bbci.co.uk/news/politics", "reuters.com/arc/outboundfeeds/newsletter-politics", "politico.com/rss/politics", "thehill"]):
return "Politics"
elif any(keyword in url for keyword in ["weather", "swpc.noaa.gov", "foxweather"]):
return "Earth Weather"
elif "vogue" in url:
return "Lifestyle"
elif any(keyword in url for keyword in ["phys.org", "aps.org", "physicsworld"]):
return "Physics"
else:
logger.warning(f"No matching category found for URL: {url}")
return "Uncategorized"
def process_and_store_articles(articles):
if not vector_db:
logger.error("Vector database is not initialized. Cannot process articles.")
return
documents = []
doc_ids = []
try:
existing_ids = set(vector_db.get(include=[])["ids"])
logger.info(f"Found {len(existing_ids)} existing document IDs in the database.")
except Exception:
existing_ids = set()
logger.info("No existing documents found or error retrieving them. Starting fresh.")
for article in articles:
try:
title = clean_text(article["title"])
link = article["link"]
description = article["description"]
published = article["published"]
description_hash = hashlib.sha256(description.encode('utf-8')).hexdigest()
doc_id = f"{title}|{link}|{published}|{description_hash}"
if doc_id in existing_ids:
continue
metadata = {
"title": article["title"],
"link": article["link"],
"published": article["published"],
"category": article["category"],
"image": article["image"],
}
doc = Document(page_content=description, metadata=metadata)
documents.append(doc)
doc_ids.append(doc_id)
existing_ids.add(doc_id)
except Exception as e:
logger.error(f"Error processing article {article['title']}: {e}")
if documents:
try:
vector_db.add_documents(documents=documents, ids=doc_ids)
vector_db.persist()
logger.info(f"Added {len(documents)} new articles to DB. Total documents now: {len(vector_db.get()['ids'])}")
except Exception as e:
logger.error(f"Error storing articles: {e}")
else:
logger.info("No new articles to add.")
def download_from_hf_hub():
if os.path.exists(LOCAL_DB_DIR):
logger.info(f"Local database directory '{LOCAL_DB_DIR}' already exists. Skipping download.")
return
logger.info(f"Attempting to download database from Hugging Face Hub repo: {REPO_ID}")
try:
snapshot_download(
repo_id=REPO_ID,
repo_type="dataset",
local_dir=LOCAL_DB_DIR,
token=HF_API_TOKEN,
)
logger.info(f"Database successfully downloaded to '{LOCAL_DB_DIR}'.")
except HfHubHTTPError as e:
logger.warning(f"Failed to download from Hub (repo may be new or empty): {e}. Building new dataset locally.")
os.makedirs(LOCAL_DB_DIR, exist_ok=True)
except Exception as e:
logger.error(f"An unexpected error occurred during download: {e}. Creating new local directory.")
os.makedirs(LOCAL_DB_DIR, exist_ok=True)
def upload_to_hf_hub():
if not os.path.exists(LOCAL_DB_DIR):
logger.warning(f"Local database directory '{LOCAL_DB_DIR}' not found. Nothing to upload.")
return
try:
hf_api.create_repo(repo_id=REPO_ID, repo_type="dataset", exist_ok=True)
logger.info(f"Uploading updated Chroma DB to {REPO_ID}...")
hf_api.upload_folder(
folder_path=LOCAL_DB_DIR,
repo_id=REPO_ID,
repo_type="dataset",
commit_message=f"Update database - {datetime.now().isoformat()}"
)
logger.info(f"Database uploaded successfully to Hugging Face Hub.")
except Exception as e:
logger.error(f"Error uploading to Hugging Face Hub: {e}")
if __name__ == "__main__":
download_from_hf_hub()
global vector_db
vector_db = Chroma(
persist_directory=LOCAL_DB_DIR,
embedding_function=embedding_model,
collection_name=COLLECTION_NAME
)
articles = fetch_rss_feeds()
if articles:
process_and_store_articles(articles)
upload_to_hf_hub()
logger.info("Script finished.") |