Spaces:
Sleeping
Sleeping
Update build_rag.py
Browse files- build_rag.py +24 -13
build_rag.py
CHANGED
@@ -1,7 +1,10 @@
|
|
|
|
|
|
1 |
import json
|
2 |
import os
|
3 |
import pandas as pd
|
4 |
import torch
|
|
|
5 |
from transformers import AutoTokenizer, AutoModel
|
6 |
import chromadb
|
7 |
import sys
|
@@ -18,6 +21,7 @@ STATUS_FILE = "build_status.log"
|
|
18 |
JSON_DIRECTORY = 'bible_json'
|
19 |
CHUNK_SIZE = 3
|
20 |
EMBEDDING_BATCH_SIZE = 16
|
|
|
21 |
BOOK_ID_TO_NAME = {
|
22 |
1: "Genesis", 2: "Exodus", 3: "Leviticus", 4: "Numbers", 5: "Deuteronomy",
|
23 |
6: "Joshua", 7: "Judges", 8: "Ruth", 9: "1 Samuel", 10: "2 Samuel",
|
@@ -36,13 +40,12 @@ BOOK_ID_TO_NAME = {
|
|
36 |
}
|
37 |
|
38 |
def update_status(message):
|
39 |
-
|
40 |
-
print(message) # Also print to Space logs
|
41 |
with open(STATUS_FILE, "w") as f:
|
42 |
f.write(message)
|
43 |
|
44 |
def process_bible_json_files(directory_path: str, chunk_size: int) -> pd.DataFrame:
|
45 |
-
# (This function
|
46 |
all_verses = []
|
47 |
if not os.path.exists(directory_path) or not os.listdir(directory_path):
|
48 |
raise FileNotFoundError(f"Directory '{directory_path}' is empty or does not exist.")
|
@@ -72,7 +75,6 @@ def process_bible_json_files(directory_path: str, chunk_size: int) -> pd.DataFra
|
|
72 |
return pd.DataFrame(all_chunks)
|
73 |
|
74 |
def main():
|
75 |
-
"""Main build process."""
|
76 |
update_status("IN_PROGRESS: Step 1/5 - Processing JSON files...")
|
77 |
bible_chunks_df = process_bible_json_files(JSON_DIRECTORY, chunk_size=CHUNK_SIZE)
|
78 |
|
@@ -81,29 +83,38 @@ def main():
|
|
81 |
import shutil
|
82 |
shutil.rmtree(CHROMA_PATH)
|
83 |
client = chromadb.PersistentClient(path=CHROMA_PATH)
|
84 |
-
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
update_status(f"IN_PROGRESS: Step 3/5 - Loading embedding model '{MODEL_NAME}'...")
|
87 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
88 |
model = AutoModel.from_pretrained(MODEL_NAME, device_map="auto")
|
89 |
|
90 |
-
update_status("IN_PROGRESS: Step 4/5 - Generating
|
91 |
-
|
92 |
-
for i in tqdm(range(0, total_chunks, EMBEDDING_BATCH_SIZE), desc="Embedding Chunks"):
|
93 |
batch_df = bible_chunks_df.iloc[i:i+EMBEDDING_BATCH_SIZE]
|
94 |
texts = batch_df['text'].tolist()
|
|
|
95 |
inputs = tokenizer(texts, return_tensors="pt", padding=True, truncation=True, max_length=512).to(model.device)
|
96 |
with torch.no_grad():
|
97 |
outputs = model(**inputs)
|
98 |
-
|
|
|
|
|
|
|
99 |
collection.add(
|
100 |
ids=[str(j) for j in range(i, i + len(batch_df))],
|
101 |
-
embeddings=embeddings,
|
102 |
documents=texts,
|
103 |
metadatas=batch_df[['reference', 'version']].to_dict('records')
|
104 |
)
|
105 |
|
106 |
update_status(f"IN_PROGRESS: Step 5/5 - Pushing database to Hugging Face Hub '{DATASET_REPO}'...")
|
|
|
107 |
create_repo(repo_id=DATASET_REPO, repo_type="dataset", exist_ok=True)
|
108 |
api = HfApi()
|
109 |
api.upload_folder(
|
@@ -118,10 +129,10 @@ if __name__ == "__main__":
|
|
118 |
try:
|
119 |
main()
|
120 |
except Exception as e:
|
|
|
121 |
error_message = traceback.format_exc()
|
122 |
-
# Be specific about token errors
|
123 |
if "401" in str(e) or "Unauthorized" in str(e):
|
124 |
-
update_status("FAILED: Hugging Face authentication error.
|
125 |
else:
|
126 |
-
update_status(f"FAILED: An unexpected error occurred. Check Space logs
|
127 |
print(error_message, file=sys.stderr)
|
|
|
1 |
+
# build_rag.py (Updated with Normalization and Cosine Distance)
|
2 |
+
|
3 |
import json
|
4 |
import os
|
5 |
import pandas as pd
|
6 |
import torch
|
7 |
+
import torch.nn.functional as F # Import the functional module
|
8 |
from transformers import AutoTokenizer, AutoModel
|
9 |
import chromadb
|
10 |
import sys
|
|
|
21 |
JSON_DIRECTORY = 'bible_json'
|
22 |
CHUNK_SIZE = 3
|
23 |
EMBEDDING_BATCH_SIZE = 16
|
24 |
+
# (BOOK_ID_TO_NAME dictionary remains the same)
|
25 |
BOOK_ID_TO_NAME = {
|
26 |
1: "Genesis", 2: "Exodus", 3: "Leviticus", 4: "Numbers", 5: "Deuteronomy",
|
27 |
6: "Joshua", 7: "Judges", 8: "Ruth", 9: "1 Samuel", 10: "2 Samuel",
|
|
|
40 |
}
|
41 |
|
42 |
def update_status(message):
|
43 |
+
print(message)
|
|
|
44 |
with open(STATUS_FILE, "w") as f:
|
45 |
f.write(message)
|
46 |
|
47 |
def process_bible_json_files(directory_path: str, chunk_size: int) -> pd.DataFrame:
|
48 |
+
# (This function is unchanged)
|
49 |
all_verses = []
|
50 |
if not os.path.exists(directory_path) or not os.listdir(directory_path):
|
51 |
raise FileNotFoundError(f"Directory '{directory_path}' is empty or does not exist.")
|
|
|
75 |
return pd.DataFrame(all_chunks)
|
76 |
|
77 |
def main():
|
|
|
78 |
update_status("IN_PROGRESS: Step 1/5 - Processing JSON files...")
|
79 |
bible_chunks_df = process_bible_json_files(JSON_DIRECTORY, chunk_size=CHUNK_SIZE)
|
80 |
|
|
|
83 |
import shutil
|
84 |
shutil.rmtree(CHROMA_PATH)
|
85 |
client = chromadb.PersistentClient(path=CHROMA_PATH)
|
86 |
+
|
87 |
+
# *** FIX 1: SET THE DISTANCE FUNCTION FOR THE COLLECTION ***
|
88 |
+
collection = client.create_collection(
|
89 |
+
name=COLLECTION_NAME,
|
90 |
+
metadata={"hnsw:space": "cosine"} # Use cosine distance
|
91 |
+
)
|
92 |
|
93 |
update_status(f"IN_PROGRESS: Step 3/5 - Loading embedding model '{MODEL_NAME}'...")
|
94 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
95 |
model = AutoModel.from_pretrained(MODEL_NAME, device_map="auto")
|
96 |
|
97 |
+
update_status("IN_PROGRESS: Step 4/5 - Generating and NORMALIZING embeddings...")
|
98 |
+
for i in tqdm(range(0, len(bible_chunks_df), EMBEDDING_BATCH_SIZE), desc="Embedding Chunks"):
|
|
|
99 |
batch_df = bible_chunks_df.iloc[i:i+EMBEDDING_BATCH_SIZE]
|
100 |
texts = batch_df['text'].tolist()
|
101 |
+
|
102 |
inputs = tokenizer(texts, return_tensors="pt", padding=True, truncation=True, max_length=512).to(model.device)
|
103 |
with torch.no_grad():
|
104 |
outputs = model(**inputs)
|
105 |
+
|
106 |
+
# *** FIX 2: NORMALIZE THE EMBEDDINGS ***
|
107 |
+
embeddings = F.normalize(outputs.last_hidden_state.mean(dim=1), p=2, dim=1)
|
108 |
+
|
109 |
collection.add(
|
110 |
ids=[str(j) for j in range(i, i + len(batch_df))],
|
111 |
+
embeddings=embeddings.cpu().tolist(), # Convert to list after normalization
|
112 |
documents=texts,
|
113 |
metadatas=batch_df[['reference', 'version']].to_dict('records')
|
114 |
)
|
115 |
|
116 |
update_status(f"IN_PROGRESS: Step 5/5 - Pushing database to Hugging Face Hub '{DATASET_REPO}'...")
|
117 |
+
# (This part is unchanged)
|
118 |
create_repo(repo_id=DATASET_REPO, repo_type="dataset", exist_ok=True)
|
119 |
api = HfApi()
|
120 |
api.upload_folder(
|
|
|
129 |
try:
|
130 |
main()
|
131 |
except Exception as e:
|
132 |
+
# (Error handling is unchanged)
|
133 |
error_message = traceback.format_exc()
|
|
|
134 |
if "401" in str(e) or "Unauthorized" in str(e):
|
135 |
+
update_status("FAILED: Hugging Face authentication error. Ensure your HF_TOKEN secret has WRITE permissions.")
|
136 |
else:
|
137 |
+
update_status(f"FAILED: An unexpected error occurred. Check Space logs. Error: {e}")
|
138 |
print(error_message, file=sys.stderr)
|