Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,104 +1,78 @@
|
|
|
|
|
|
1 |
import sys
|
2 |
import subprocess
|
3 |
from flask import Flask, render_template, request, flash, redirect, url_for, jsonify
|
4 |
import torch
|
|
|
5 |
from transformers import AutoTokenizer, AutoModel
|
6 |
import os
|
7 |
import chromadb
|
8 |
from huggingface_hub import snapshot_download
|
9 |
|
10 |
-
#
|
11 |
app = Flask(__name__)
|
12 |
app.secret_key = os.urandom(24)
|
13 |
|
14 |
-
# --- 2. Configuration & Resource Loading ---
|
15 |
-
print("Starting application...")
|
16 |
-
|
17 |
-
# --- Configuration (Must match build_rag.py) ---
|
18 |
CHROMA_PATH = "chroma_db"
|
19 |
COLLECTION_NAME = "bible_verses"
|
20 |
MODEL_NAME = "google/embeddinggemma-300m"
|
21 |
DATASET_REPO = "broadfield-dev/bible-chromadb-gemma"
|
22 |
-
STATUS_FILE = "build_status.log"
|
23 |
|
24 |
-
# --- Global variables for resources ---
|
25 |
chroma_collection = None
|
26 |
tokenizer = None
|
27 |
embedding_model = None
|
28 |
|
29 |
def load_resources():
|
30 |
-
|
31 |
global chroma_collection, tokenizer, embedding_model
|
32 |
-
if chroma_collection and embedding_model:
|
33 |
-
return True
|
34 |
-
|
35 |
print("Attempting to load resources...")
|
36 |
try:
|
37 |
if not os.path.exists(CHROMA_PATH) or not os.listdir(CHROMA_PATH):
|
38 |
print(f"Local DB not found. Downloading from '{DATASET_REPO}'...")
|
39 |
-
snapshot_download(
|
40 |
-
repo_id=DATASET_REPO,
|
41 |
-
repo_type="dataset",
|
42 |
-
local_dir=CHROMA_PATH,
|
43 |
-
local_dir_use_symlinks=False
|
44 |
-
)
|
45 |
print("Database files downloaded.")
|
46 |
else:
|
47 |
print("Local database files found.")
|
48 |
-
|
49 |
client = chromadb.PersistentClient(path=CHROMA_PATH)
|
50 |
collection = client.get_collection(name=COLLECTION_NAME)
|
51 |
if collection.count() == 0:
|
52 |
print("Warning: Database collection is empty.")
|
53 |
return False
|
54 |
-
|
55 |
chroma_collection = collection
|
56 |
print(f"Successfully connected to DB with {collection.count()} items.")
|
57 |
-
|
58 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
59 |
embedding_model = AutoModel.from_pretrained(MODEL_NAME)
|
60 |
print(f"Embedding model '{MODEL_NAME}' loaded successfully.")
|
61 |
-
|
62 |
return True
|
63 |
except Exception as e:
|
64 |
-
print(f"Could not load resources.
|
65 |
print(f"Error: {e}")
|
66 |
return False
|
67 |
|
68 |
resources_loaded = load_resources()
|
69 |
|
70 |
-
#
|
71 |
-
|
72 |
@app.route('/')
|
73 |
def home():
|
74 |
return render_template('index.html')
|
75 |
|
76 |
@app.route('/build-rag', methods=['POST'])
|
77 |
def build_rag_route():
|
78 |
-
"""Triggers the build script and immediately responds."""
|
79 |
try:
|
80 |
-
|
81 |
-
with open(STATUS_FILE, "w") as f:
|
82 |
-
f.write("IN_PROGRESS: Starting build process...")
|
83 |
-
|
84 |
-
# Start the build process in the background
|
85 |
subprocess.Popen([sys.executable, "build_rag.py"])
|
86 |
-
|
87 |
return jsonify({"status": "started"})
|
88 |
except Exception as e:
|
89 |
-
with open(STATUS_FILE, "w") as f:
|
90 |
-
f.write(f"FAILED: Could not start process - {e}")
|
91 |
return jsonify({"status": "error", "message": str(e)}), 500
|
92 |
|
93 |
@app.route('/status')
|
94 |
def status():
|
95 |
-
|
96 |
-
|
97 |
-
return jsonify({"status": "NOT_STARTED"})
|
98 |
-
|
99 |
-
with open(STATUS_FILE, "r") as f:
|
100 |
-
status_line = f.read().strip()
|
101 |
-
|
102 |
status_code, _, message = status_line.partition(': ')
|
103 |
return jsonify({"status": status_code, "message": message})
|
104 |
|
@@ -118,10 +92,12 @@ def search():
|
|
118 |
inputs = tokenizer(user_query, return_tensors="pt")
|
119 |
with torch.no_grad():
|
120 |
outputs = embedding_model(**inputs)
|
121 |
-
|
|
|
|
|
122 |
|
123 |
search_results = chroma_collection.query(
|
124 |
-
query_embeddings=query_embedding.tolist(),
|
125 |
n_results=10
|
126 |
)
|
127 |
|
@@ -138,6 +114,5 @@ def search():
|
|
138 |
|
139 |
return render_template('index.html', results=results_list, query=user_query)
|
140 |
|
141 |
-
# --- 4. Run the App ---
|
142 |
if __name__ == '__main__':
|
143 |
app.run(host='0.0.0.0', port=7860)
|
|
|
1 |
+
# app.py (Updated with Normalization for the query)
|
2 |
+
|
3 |
import sys
|
4 |
import subprocess
|
5 |
from flask import Flask, render_template, request, flash, redirect, url_for, jsonify
|
6 |
import torch
|
7 |
+
import torch.nn.functional as F # Import the functional module
|
8 |
from transformers import AutoTokenizer, AutoModel
|
9 |
import os
|
10 |
import chromadb
|
11 |
from huggingface_hub import snapshot_download
|
12 |
|
13 |
+
# (App setup and load_resources function are unchanged)
|
14 |
app = Flask(__name__)
|
15 |
app.secret_key = os.urandom(24)
|
16 |
|
|
|
|
|
|
|
|
|
17 |
CHROMA_PATH = "chroma_db"
|
18 |
COLLECTION_NAME = "bible_verses"
|
19 |
MODEL_NAME = "google/embeddinggemma-300m"
|
20 |
DATASET_REPO = "broadfield-dev/bible-chromadb-gemma"
|
21 |
+
STATUS_FILE = "build_status.log"
|
22 |
|
|
|
23 |
chroma_collection = None
|
24 |
tokenizer = None
|
25 |
embedding_model = None
|
26 |
|
27 |
def load_resources():
|
28 |
+
# (This function is unchanged)
|
29 |
global chroma_collection, tokenizer, embedding_model
|
30 |
+
if chroma_collection and embedding_model: return True
|
|
|
|
|
31 |
print("Attempting to load resources...")
|
32 |
try:
|
33 |
if not os.path.exists(CHROMA_PATH) or not os.listdir(CHROMA_PATH):
|
34 |
print(f"Local DB not found. Downloading from '{DATASET_REPO}'...")
|
35 |
+
snapshot_download(repo_id=DATASET_REPO, repo_type="dataset", local_dir=CHROMA_PATH, local_dir_use_symlinks=False)
|
|
|
|
|
|
|
|
|
|
|
36 |
print("Database files downloaded.")
|
37 |
else:
|
38 |
print("Local database files found.")
|
|
|
39 |
client = chromadb.PersistentClient(path=CHROMA_PATH)
|
40 |
collection = client.get_collection(name=COLLECTION_NAME)
|
41 |
if collection.count() == 0:
|
42 |
print("Warning: Database collection is empty.")
|
43 |
return False
|
|
|
44 |
chroma_collection = collection
|
45 |
print(f"Successfully connected to DB with {collection.count()} items.")
|
|
|
46 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
47 |
embedding_model = AutoModel.from_pretrained(MODEL_NAME)
|
48 |
print(f"Embedding model '{MODEL_NAME}' loaded successfully.")
|
|
|
49 |
return True
|
50 |
except Exception as e:
|
51 |
+
print(f"Could not load resources. DB may not be built or repo is empty.")
|
52 |
print(f"Error: {e}")
|
53 |
return False
|
54 |
|
55 |
resources_loaded = load_resources()
|
56 |
|
57 |
+
# (home, build_rag_route, and status routes are unchanged)
|
|
|
58 |
@app.route('/')
|
59 |
def home():
|
60 |
return render_template('index.html')
|
61 |
|
62 |
@app.route('/build-rag', methods=['POST'])
|
63 |
def build_rag_route():
|
|
|
64 |
try:
|
65 |
+
with open(STATUS_FILE, "w") as f: f.write("IN_PROGRESS: Starting build process...")
|
|
|
|
|
|
|
|
|
66 |
subprocess.Popen([sys.executable, "build_rag.py"])
|
|
|
67 |
return jsonify({"status": "started"})
|
68 |
except Exception as e:
|
69 |
+
with open(STATUS_FILE, "w") as f: f.write(f"FAILED: Could not start process - {e}")
|
|
|
70 |
return jsonify({"status": "error", "message": str(e)}), 500
|
71 |
|
72 |
@app.route('/status')
|
73 |
def status():
|
74 |
+
if not os.path.exists(STATUS_FILE): return jsonify({"status": "NOT_STARTED"})
|
75 |
+
with open(STATUS_FILE, "r") as f: status_line = f.read().strip()
|
|
|
|
|
|
|
|
|
|
|
76 |
status_code, _, message = status_line.partition(': ')
|
77 |
return jsonify({"status": status_code, "message": message})
|
78 |
|
|
|
92 |
inputs = tokenizer(user_query, return_tensors="pt")
|
93 |
with torch.no_grad():
|
94 |
outputs = embedding_model(**inputs)
|
95 |
+
|
96 |
+
# *** FIX: NORMALIZE THE QUERY EMBEDDING ***
|
97 |
+
query_embedding = F.normalize(outputs.last_hidden_state.mean(dim=1), p=2, dim=1)
|
98 |
|
99 |
search_results = chroma_collection.query(
|
100 |
+
query_embeddings=query_embedding.cpu().tolist(),
|
101 |
n_results=10
|
102 |
)
|
103 |
|
|
|
114 |
|
115 |
return render_template('index.html', results=results_list, query=user_query)
|
116 |
|
|
|
117 |
if __name__ == '__main__':
|
118 |
app.run(host='0.0.0.0', port=7860)
|