File size: 18,892 Bytes
f51755e
 
 
 
 
 
 
 
 
 
1d5f7d8
f51755e
 
 
 
 
 
 
1d5f7d8
f51755e
1d5f7d8
f51755e
 
 
 
 
 
 
 
 
 
 
 
 
 
1d5f7d8
f51755e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d5f7d8
f51755e
 
 
 
 
 
 
1d5f7d8
f51755e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d5f7d8
f51755e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d5f7d8
 
f51755e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d5f7d8
f51755e
 
 
 
 
 
 
 
1d5f7d8
 
 
 
 
 
 
f51755e
1d5f7d8
 
f51755e
 
 
 
1d5f7d8
 
 
 
 
 
 
 
 
 
 
 
 
 
f51755e
 
 
 
 
 
1d5f7d8
 
 
 
 
 
f51755e
 
 
 
 
 
 
 
 
 
 
 
1d5f7d8
f51755e
 
 
 
 
1d5f7d8
f51755e
 
 
1d5f7d8
f51755e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d5f7d8
f51755e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d5f7d8
f51755e
 
 
1d5f7d8
f51755e
1d5f7d8
 
 
f51755e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d5f7d8
 
 
 
 
f51755e
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
import gradio as gr
import pandas as pd
import threading
from datetime import datetime
import os
import json
import sqlite3
import time
from dotenv import load_dotenv

DEMO_MODE = os.getenv("DEMO_MODE", "False").lower() == 'true'
# --- Load Environment & Configuration ---
load_dotenv()
try:
    from datasets import load_dataset, Dataset, DatasetDict, Features, Value
    HF_DATASETS_AVAILABLE = True
except ImportError:
    HF_DATASETS_AVAILABLE = False
    Features, Value = None, None

STORAGE_BACKEND_CONFIG = os.getenv("STORAGE_BACKEND", "JSON").upper()
HF_DATASET_REPO = os.getenv("HF_DATASET_REPO")
HF_TOKEN = os.getenv("HF_TOKEN")
HF_BACKUP_THRESHOLD = int(os.getenv("HF_BACKUP_THRESHOLD", 10))
DB_FILE_JSON = "social_data.json"
DB_FILE_SQLITE = "social_data.db"

db_lock = threading.Lock()
dirty_operations_count = 0

# --- Database Initialization and Persistence ---

def force_persist_data():
    global dirty_operations_count
    with db_lock:
        storage_backend = STORAGE_BACKEND_CONFIG
        if storage_backend == "RAM":
            return True, "RAM backend. No persistence."
        elif storage_backend == "SQLITE":
            with sqlite3.connect(DB_FILE_SQLITE) as conn:
                users_df = pd.DataFrame(list(users_db.items()), columns=['username', 'password'])
                users_df.to_sql('users', conn, if_exists='replace', index=False)
                posts_df.to_sql('posts', conn, if_exists='replace', index=False)
                comments_df.to_sql('comments', conn, if_exists='replace', index=False)
            return True, "Successfully saved to SQLite."
        elif storage_backend == "JSON":
            with open(DB_FILE_JSON, "w") as f:
                json.dump({"users": users_db, "posts": posts_df.to_dict('records'), "comments": comments_df.to_dict('records')}, f, indent=2)
            return True, "Successfully saved to JSON file."
        elif storage_backend == "HF_DATASET":
            if not all([HF_DATASETS_AVAILABLE, HF_TOKEN, HF_DATASET_REPO]):
                return False, "HF_DATASET backend is not configured correctly."
            try:
                print("Pushing data to Hugging Face Hub...")
                dataset_dict = DatasetDict({
                    'users': Dataset.from_pandas(pd.DataFrame(list(users_db.items()), columns=['username', 'password'])),
                    'posts': Dataset.from_pandas(posts_df),
                    'comments': Dataset.from_pandas(comments_df)
                })
                dataset_dict.push_to_hub(HF_DATASET_REPO, token=HF_TOKEN, private=True)
                dirty_operations_count = 0
                return True, f"Successfully pushed data to {HF_DATASET_REPO}."
            except Exception as e:
                return False, f"Error pushing to Hugging Face Hub: {e}"
    return False, "Unknown backend."

def handle_persistence_after_change():
    global dirty_operations_count
    storage_backend = STORAGE_BACKEND_CONFIG
    if storage_backend in ["JSON", "SQLITE"]:
        force_persist_data()
    elif storage_backend == "HF_DATASET":
        with db_lock:
            dirty_operations_count += 1
            print(f"HF_DATASET: {dirty_operations_count}/{HF_BACKUP_THRESHOLD} operations until next auto-backup.")
            if dirty_operations_count >= HF_BACKUP_THRESHOLD:
                print(f"Threshold of {HF_BACKUP_THRESHOLD} reached. Triggering auto-backup.")
                force_persist_data()

def load_data():
    global STORAGE_BACKEND_CONFIG
    storage_backend = STORAGE_BACKEND_CONFIG
    with db_lock:
        users, posts, comments = {"admin": "password"}, pd.DataFrame(columns=["post_id", "username", "content", "timestamp"]), pd.DataFrame(columns=["comment_id", "post_id", "username", "content", "timestamp", "reply_to_comment_id"])

        if storage_backend == "SQLITE":
            try:
                with sqlite3.connect(DB_FILE_SQLITE) as conn:
                    cursor = conn.cursor()
                    cursor.execute("CREATE TABLE IF NOT EXISTS users (username TEXT PRIMARY KEY, password TEXT NOT NULL)")
                    cursor.execute("CREATE TABLE IF NOT EXISTS posts (post_id INTEGER PRIMARY KEY, username TEXT, content TEXT, timestamp TEXT)")
                    cursor.execute("CREATE TABLE IF NOT EXISTS comments (comment_id INTEGER PRIMARY KEY, post_id INTEGER, username TEXT, content TEXT, timestamp TEXT, reply_to_comment_id INTEGER)")
                    cursor.execute("INSERT OR IGNORE INTO users (username, password) VALUES (?, ?)", ("admin", "password"))
                    conn.commit()
                    users = dict(conn.execute("SELECT username, password FROM users").fetchall())
                    posts = pd.read_sql_query("SELECT * FROM posts", conn)
                    comments = pd.read_sql_query("SELECT * FROM comments", conn)
            except Exception as e:
                print(f"CRITICAL: Failed to load or create SQLite DB at '{DB_FILE_SQLITE}'. Falling back to RAM. Error: {e}")
                STORAGE_BACKEND_CONFIG = "RAM"
        
        elif storage_backend == "JSON":
            if os.path.exists(DB_FILE_JSON):
                try:
                    with open(DB_FILE_JSON, "r") as f:
                        data = json.load(f)
                    users, posts, comments = data.get("users", users), pd.DataFrame(data.get("posts", [])), pd.DataFrame(data.get("comments", []))
                except (json.JSONDecodeError, KeyError):
                    print(f"Warning: JSON file '{DB_FILE_JSON}' is corrupted or empty. Starting with fresh data.")
            else:
                print(f"JSON file '{DB_FILE_JSON}' not found. Will be created on first change.")

        elif storage_backend == "HF_DATASET":
            if all([HF_DATASETS_AVAILABLE, HF_TOKEN, HF_DATASET_REPO]):
                try:
                    print(f"Attempting to load data from HF Dataset: {HF_DATASET_REPO}")
                    ds_dict = load_dataset(HF_DATASET_REPO, token=HF_TOKEN, trust_remote_code=True)
                    users = dict(zip(ds_dict['users']['username'], ds_dict['users']['password']))
                    posts = ds_dict['posts'].to_pandas()
                    comments = ds_dict['comments'].to_pandas()
                    print("Successfully loaded data from HF Dataset.")
                except Exception as e:
                    print(f"Could not load from HF Dataset '{HF_DATASET_REPO}'. Attempting to initialize a new one. Error: {e}")
                    try:
                        user_features = Features({'username': Value('string'), 'password': Value('string')})
                        post_features = Features({'post_id': Value('int64'), 'username': Value('string'), 'content': Value('string'), 'timestamp': Value('string')})
                        comment_features = Features({'comment_id': Value('int64'), 'post_id': Value('int64'), 'username': Value('string'), 'content': Value('string'), 'timestamp': Value('string'), 'reply_to_comment_id': Value('int64')})
                        
                        dataset_dict = DatasetDict({
                            'users': Dataset.from_pandas(pd.DataFrame(list(users.items()), columns=['username', 'password']), features=user_features),
                            'posts': Dataset.from_pandas(posts, features=post_features),
                            'comments': Dataset.from_pandas(comments, features=comment_features)
                        })
                        dataset_dict.push_to_hub(HF_DATASET_REPO, token=HF_TOKEN, private=True)
                        print(f"Successfully initialized new empty HF Dataset at {HF_DATASET_REPO}.")
                    except Exception as e_push:
                        print(f"CRITICAL: Failed to create new HF Dataset. Falling back to RAM for this session. Push Error: {e_push}")
                        STORAGE_BACKEND_CONFIG = "RAM"
            else:
                 print("HF_DATASET backend not fully configured (check env vars and library install). Falling back to RAM for this session.")
                 STORAGE_BACKEND_CONFIG = "RAM"

    if "reply_to_comment_id" not in comments.columns:
        comments["reply_to_comment_id"] = None
        
    post_counter = int(posts['post_id'].max()) if not posts.empty else 0
    comment_counter = int(comments['comment_id'].max()) if not comments.empty else 0
    return users, posts, comments, post_counter, comment_counter

users_db, posts_df, comments_df, post_counter, comment_counter = load_data()

# --- API Functions ---
def api_register(username, password):
    if not username or not password: return "[Auth API] Failed: Username/password cannot be empty."
    with db_lock:
        if username in users_db: return f"[Auth API] Failed: Username '{username}' already exists."
        users_db[username] = password
        handle_persistence_after_change()
    return f"[Auth API] Success: User '{username}' registered."

def api_login(username, password):
    return f"{username}:{password}" if username in users_db and users_db.get(username) == password else "[Auth API] Failed: Invalid credentials."

def _get_user_from_token(auth_token):
    if not auth_token or ':' not in auth_token: return None
    try:
        username, password = auth_token.split(':', 1)
        return username if username in users_db and users_db.get(username) == password else None
    except (ValueError, TypeError): return None

def api_create_post(auth_token, content):
    global posts_df, post_counter
    username = _get_user_from_token(auth_token)
    if not username: return "[Post API] Failed: Invalid auth token."
    if not content or not content.strip(): return "[Post API] Failed: Post content cannot be empty."
    with db_lock:
        post_counter += 1
        new_post = pd.DataFrame([{"post_id": post_counter, "username": username, "content": content, "timestamp": datetime.utcnow().strftime("%Y-%m-%d %H:%M:%S")}])
        posts_df = pd.concat([posts_df, new_post], ignore_index=True)
        handle_persistence_after_change()
    return f"[Post API] Success: Post created with ID {post_counter}."

def api_create_comment(auth_token, post_id, content, reply_to_comment_id=None):
    global comments_df, comment_counter
    username = _get_user_from_token(auth_token)
    if not username: return "[Comment API] Failed: Invalid auth token."
    if not content or not content.strip(): return "[Comment API] Failed: Comment content cannot be empty."
    with db_lock:
        try: target_post_id = int(post_id)
        except (ValueError, TypeError): return f"[Comment API] Failed: Post ID must be a number."
        if target_post_id not in posts_df['post_id'].values: return f"[Comment API] Failed: Post with ID {post_id} not found."
        
        target_reply_id = None
        if reply_to_comment_id is not None:
            try: target_reply_id = int(reply_to_comment_id)
            except (ValueError, TypeError): return "[Comment API] Failed: Reply ID must be a number."
            if target_reply_id not in comments_df['comment_id'].values: return f"[Comment API] Failed: Comment to reply to (ID {target_reply_id}) not found."

        comment_counter += 1
        new_comment_data = {"comment_id": comment_counter, "post_id": target_post_id, "username": username, "content": content, "timestamp": datetime.utcnow().strftime("%Y-%m-%d %H:%M:%S"), "reply_to_comment_id": target_reply_id}
        new_comment = pd.DataFrame([new_comment_data])
        comments_df = pd.concat([comments_df, new_comment], ignore_index=True)
        handle_persistence_after_change()
    return f"[Comment API] Success: Comment created on post {post_id}."

def _format_comments_threaded(post_id, all_comments_df, parent_id=None, depth=0):
    thread = []
    # Match NaN correctly for top-level comments
    if parent_id is None:
        children = all_comments_df[(all_comments_df['post_id'] == post_id) & (all_comments_df['reply_to_comment_id'].isna())]
    else:
        children = all_comments_df[all_comments_df['reply_to_comment_id'] == parent_id]
        
    for _, comment in children.iterrows():
        indent = "  " * depth
        thread.append(f"{indent}  - (ID: {comment['comment_id']}) @{comment['username']}: {comment['content']}")
        thread.extend(_format_comments_threaded(post_id, all_comments_df, parent_id=comment['comment_id'], depth=depth + 1))
    return thread

def api_get_feed(search_query: str = None):
    with db_lock:
        current_posts, current_comments = posts_df.copy(), comments_df.copy()
    if current_posts.empty: return pd.DataFrame(columns=["post_id", "username", "content", "timestamp", "comments"])
    display_posts = current_posts[current_posts['content'].str.contains(search_query, case=False, na=False)] if search_query and not search_query.isspace() else current_posts
    sorted_posts = display_posts.sort_values(by="timestamp", ascending=False)
    
    feed_data = []
    for _, post in sorted_posts.iterrows():
        threaded_comments = _format_comments_threaded(post['post_id'], current_comments)
        feed_data.append({"post_id": post['post_id'], "username": post['username'], "content": post['content'], "timestamp": post['timestamp'], "comments": "\n".join(threaded_comments)})
        
    return pd.DataFrame(feed_data) if feed_data else pd.DataFrame(columns=["post_id", "username", "content", "timestamp", "comments"])

# --- UI Helper Functions ---
def ui_manual_post(username, password, content):
    if not username or not password:
        return "Username and password are required.", api_get_feed()
    auth_token = api_login(username, password)
    if "Failed" in auth_token:
        return "Login failed. Check credentials.", api_get_feed()
    result = api_create_post(auth_token, content)
    return result, api_get_feed()

def ui_manual_comment(username, password, post_id, reply_id, content):
    if not username or not password:
        return "Username and password are required.", api_get_feed()
    auth_token = api_login(username, password)
    if "Failed" in auth_token:
        return "Login failed. Check credentials.", api_get_feed()
    result = api_create_comment(auth_token, post_id, content, reply_to_comment_id=reply_id)
    return result, api_get_feed()

with gr.Blocks(theme=gr.themes.Soft(), title="Social App") as demo:
    gr.Markdown("# Dummy Social Media Platform")
    gr.Markdown(f"This app provides an API for iLearn agents to interact with. **Storage Backend: `{STORAGE_BACKEND_CONFIG}`**")
    
    with gr.Tabs():
        with gr.TabItem("Live Feed"):
            feed_df_display = gr.DataFrame(label="Feed", headers=["post_id", "username", "content", "timestamp", "comments"], interactive=False, wrap=True)
            refresh_btn = gr.Button("Refresh Feed")
        
        with gr.TabItem("Manual Actions & Settings"):
            manual_action_status = gr.Textbox(label="Action Status", interactive=False)
            with gr.Row():
                with gr.Group():
                    gr.Markdown("### Manually Create Post")
                    post_user = gr.Textbox(label="Username", value="admin")
                    post_pass = gr.Textbox(label="Password", type="password", value="password")
                    post_content = gr.Textbox(label="Post Content", lines=3, placeholder="What's on your mind?")
                    post_button = gr.Button("Submit Post", variant="primary")
                with gr.Group():
                    gr.Markdown("### Manually Create Comment")
                    comment_user = gr.Textbox(label="Username", value="admin")
                    comment_pass = gr.Textbox(label="Password", type="password", value="password")
                    comment_post_id = gr.Number(label="Target Post ID", precision=0)
                    comment_reply_id = gr.Number(label="Reply to Comment ID (optional)", precision=0)
                    comment_content = gr.Textbox(label="Comment Content", lines=2, placeholder="Add a comment...")
                    comment_button = gr.Button("Submit Comment", variant="primary")
            with gr.Group():
                gr.Markdown("### Settings")
                feed_refresh_interval_slider = gr.Slider(minimum=5, maximum=120, value=15, step=5, label="Feed Refresh Interval (seconds)")

        with gr.TabItem("Admin", visible=(STORAGE_BACKEND_CONFIG == "HF_DATASET")):
            gr.Markdown("### Hugging Face Dataset Control")
            backup_btn = gr.Button("Force Backup to Hugging Face Hub", visible=not DEMO_MODE)
            backup_status = gr.Textbox(label="Backup Status", interactive=False)

    # Event Handlers
    post_button.click(
        fn=ui_manual_post, 
        inputs=[post_user, post_pass, post_content], 
        outputs=[manual_action_status, feed_df_display]
    )
    comment_button.click(
        fn=ui_manual_comment, 
        inputs=[comment_user, comment_pass, comment_post_id, comment_reply_id, comment_content], 
        outputs=[manual_action_status, feed_df_display]
    )
    
    last_refresh_time = time.time()
    def timed_feed_refresh(interval):
        global last_refresh_time
        if time.time() - last_refresh_time > interval:
            last_refresh_time = time.time()
            return api_get_feed()
        return gr.update()

    gr.Timer(1).tick(
        fn=timed_feed_refresh,
        inputs=[feed_refresh_interval_slider],
        outputs=[feed_df_display]
    )

    refresh_btn.click(api_get_feed, None, feed_df_display)
    
    def admin_backup_handler():
        success, message = force_persist_data()
        return message
        
    if STORAGE_BACKEND_CONFIG == "HF_DATASET":
        backup_btn.click(admin_backup_handler, None, backup_status)
    
    demo.load(api_get_feed, None, feed_df_display)

    with gr.Column(visible=False if DEMO_MODE else True):
        gr.Interface(api_register, ["text", gr.Textbox(type="password")], "text", api_name="register", allow_flagging="never")
        gr.Interface(api_login, ["text", gr.Textbox(type="password")], "text", api_name="login", allow_flagging="never")
        gr.Interface(api_create_post, ["text", "text"], "text", api_name="create_post", allow_flagging="never")
        gr.Interface(api_create_comment, ["text", "number", "text", "number"], "text", api_name="create_comment", allow_flagging="never")
        gr.Interface(api_get_feed, ["text"], "dataframe", api_name="get_feed", allow_flagging="never")

if __name__ == "__main__":
    print(f"Starting Social Media App server with {STORAGE_BACKEND_CONFIG} backend.")
    if STORAGE_BACKEND_CONFIG == "HF_DATASET" and not HF_DATASETS_AVAILABLE:
        print("\nWARNING: 'datasets' library not found. Please run `pip install datasets huggingface_hub` to use the HF_DATASET backend.\n")
    app_port = int(os.getenv("GRADIO_PORT", 7860))
    demo.queue().launch(server_name="0.0.0.0", server_port=app_port, share=False)