Spaces:
Sleeping
Sleeping
File size: 12,896 Bytes
03a2414 f3b6eeb 03a2414 f3b6eeb 03a2414 f3b6eeb 03a2414 c9ee5e6 03a2414 c9ee5e6 03a2414 c9ee5e6 f3b6eeb 03a2414 c9ee5e6 03a2414 f3b6eeb 03a2414 f3b6eeb 03a2414 c9ee5e6 03a2414 f3b6eeb c9ee5e6 f3b6eeb c9ee5e6 f3b6eeb 03a2414 c9ee5e6 03a2414 c9ee5e6 03a2414 c9ee5e6 03a2414 c9ee5e6 03a2414 c9ee5e6 03a2414 c9ee5e6 03a2414 c9ee5e6 03a2414 c9ee5e6 03a2414 c9ee5e6 f3b6eeb c9ee5e6 03a2414 c9ee5e6 03a2414 c9ee5e6 03a2414 f3b6eeb 03a2414 f3b6eeb c9ee5e6 03a2414 c9ee5e6 03a2414 c9ee5e6 03a2414 c9ee5e6 03a2414 c9ee5e6 f3b6eeb c9ee5e6 03a2414 c9ee5e6 03a2414 c9ee5e6 f3b6eeb c9ee5e6 03a2414 f3b6eeb c9ee5e6 03a2414 c9ee5e6 03a2414 c9ee5e6 03a2414 f3b6eeb 03a2414 c9ee5e6 03a2414 c9ee5e6 f3b6eeb c9ee5e6 f3b6eeb 03a2414 c9ee5e6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
# memory_logic.py
import os
import json
import time
from datetime import datetime
import logging
import re
import threading
try:
from sentence_transformers import SentenceTransformer
import faiss
import numpy as np
except ImportError:
SentenceTransformer, faiss, np = None, None, None
logging.warning("SentenceTransformers, FAISS, or NumPy not installed. Semantic search will be unavailable.")
try:
import sqlite3
except ImportError:
sqlite3 = None
logging.warning("sqlite3 module not available. SQLite backend will be unavailable.")
try:
from datasets import load_dataset, Dataset
except ImportError:
load_dataset, Dataset = None, None
logging.warning("datasets library not installed. Hugging Face Dataset backend will be unavailable.")
logger = logging.getLogger(__name__)
for lib_name in ["sentence_transformers", "faiss", "datasets", "huggingface_hub"]:
if logging.getLogger(lib_name):
logging.getLogger(lib_name).setLevel(logging.WARNING)
STORAGE_BACKEND = os.getenv("STORAGE_BACKEND", "RAM").upper()
SQLITE_DB_PATH = os.getenv("SQLITE_DB_PATH", "app_data/ai_memory.db")
HF_TOKEN = os.getenv("HF_TOKEN")
HF_MEMORY_DATASET_REPO = os.getenv("HF_MEMORY_DATASET_REPO", "broadfield-dev/ai-brain")
HF_RULES_DATASET_REPO = os.getenv("HF_RULES_DATASET_REPO", "broadfield-dev/ai-rules")
_embedder = None
_dimension = 384
_long_term_memory_items_list = []
_faiss_long_term_memory_index = None
_short_term_memory_items_list = []
_faiss_short_term_memory_index = None
_rules_items_list = []
_faiss_rules_index = None
_initialized = False
_init_lock = threading.Lock()
def _get_sqlite_connection():
if not sqlite3:
raise ImportError("sqlite3 module is required for SQLite backend but not found.")
db_dir = os.path.dirname(SQLITE_DB_PATH)
if db_dir and not os.path.exists(db_dir):
os.makedirs(db_dir, exist_ok=True)
return sqlite3.connect(SQLITE_DB_PATH, timeout=10)
def _build_faiss_index_from_json_strings(memory_items: list[str]) -> faiss.Index | None:
if not memory_items or not _embedder:
return faiss.IndexFlatL2(_dimension)
texts_to_embed = []
valid_indices = []
for i, mem_json_str in enumerate(memory_items):
try:
mem_obj = json.loads(mem_json_str)
text = f"User: {mem_obj.get('user_input', '')}\nAI: {mem_obj.get('bot_response', '')}\nTakeaway: {mem_obj.get('metrics', {}).get('takeaway', 'N/A')}"
texts_to_embed.append(text)
valid_indices.append(i)
except json.JSONDecodeError:
continue
if not texts_to_embed:
return faiss.IndexFlatL2(_dimension)
try:
embeddings = _embedder.encode(texts_to_embed, convert_to_tensor=False, show_progress_bar=False)
embeddings_np = np.array(embeddings, dtype=np.float32)
if embeddings_np.ndim == 2 and embeddings_np.shape[1] == _dimension:
index = faiss.IndexFlatL2(_dimension)
index.add(embeddings_np)
return index
else:
logger.error(f"Error building FAISS index: embedding shape mismatch.")
return faiss.IndexFlatL2(_dimension)
except Exception as e:
logger.error(f"Failed to build FAISS index: {e}", exc_info=True)
return faiss.IndexFlatL2(_dimension)
def initialize_memory_system():
global _initialized, _embedder, _dimension
global _long_term_memory_items_list, _faiss_long_term_memory_index
global _short_term_memory_items_list, _faiss_short_term_memory_index
global _rules_items_list, _faiss_rules_index
with _init_lock:
if _initialized:
return
logger.info(f"Initializing memory system with backend: {STORAGE_BACKEND}")
init_start_time = time.time()
if not all([SentenceTransformer, faiss, np]):
logger.error("Core RAG libraries not available. Cannot initialize semantic memory.")
return
if not _embedder:
try:
_embedder = SentenceTransformer('all-MiniLM-L6-v2', cache_folder="./sentence_transformer_cache")
_dimension = _embedder.get_sentence_embedding_dimension() or 384
except Exception as e:
logger.critical(f"FATAL: Error loading SentenceTransformer: {e}", exc_info=True)
return
long_term_mems = []
if STORAGE_BACKEND == "SQLITE" and sqlite3:
try:
with _get_sqlite_connection() as conn:
long_term_mems = [row[0] for row in conn.execute("SELECT memory_json FROM memories ORDER BY created_at ASC")]
except Exception as e: logger.error(f"Error loading long-term memories from SQLite: {e}")
elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset:
try:
dataset = load_dataset(HF_MEMORY_DATASET_REPO, token=HF_TOKEN, trust_remote_code=True)
if "train" in dataset and "memory_json" in dataset["train"].column_names:
long_term_mems = [m for m in dataset["train"]["memory_json"] if isinstance(m, str)]
except Exception as e: logger.error(f"Error loading long-term memories from HF Dataset: {e}")
_long_term_memory_items_list = long_term_mems
logger.info(f"Loaded {len(_long_term_memory_items_list)} long-term memory items.")
_faiss_long_term_memory_index = _build_faiss_index_from_json_strings(_long_term_memory_items_list)
logger.info(f"Long-term memory FAISS index built. Total items: {_faiss_long_term_memory_index.ntotal if _faiss_long_term_memory_index else 'N/A'}")
_short_term_memory_items_list = []
_faiss_short_term_memory_index = faiss.IndexFlatL2(_dimension)
logger.info("Short-term memory initialized (empty).")
temp_rules_text = []
if STORAGE_BACKEND == "SQLITE" and sqlite3:
try:
with _get_sqlite_connection() as conn: temp_rules_text = [row[0] for row in conn.execute("SELECT rule_text FROM rules")]
except Exception: pass
elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset:
try:
dataset = load_dataset(HF_RULES_DATASET_REPO, token=HF_TOKEN, trust_remote_code=True)
if "train" in dataset and "rule_text" in dataset["train"].column_names:
temp_rules_text = [r for r in dataset["train"]["rule_text"] if isinstance(r, str) and r.strip()]
except Exception: pass
_rules_items_list = sorted(list(set(temp_rules_text)))
_faiss_rules_index = faiss.IndexFlatL2(_dimension)
if _rules_items_list:
rule_embeddings = _embedder.encode(_rules_items_list, convert_to_tensor=False)
_faiss_rules_index.add(np.array(rule_embeddings, dtype=np.float32))
logger.info(f"Rules FAISS index built. Total items: {_faiss_rules_index.ntotal if _faiss_rules_index else 'N/A'}")
_initialized = True
logger.info(f"Memory system initialization complete in {time.time() - init_start_time:.2f}s")
def add_memory_entry(user_input: str, metrics: dict, bot_response: str) -> tuple[bool, str]:
if not _initialized: initialize_memory_system()
if not _embedder: return False, "Embedder not initialized."
memory_obj = {"user_input": user_input, "metrics": metrics, "bot_response": bot_response, "timestamp": datetime.utcnow().isoformat()}
memory_json_str = json.dumps(memory_obj)
text_to_embed = f"User: {user_input}\nAI: {bot_response}\nTakeaway: {metrics.get('takeaway', 'N/A')}"
try:
embedding = _embedder.encode([text_to_embed], convert_to_tensor=False)
embedding_np = np.array(embedding, dtype=np.float32).reshape(1, -1)
_faiss_short_term_memory_index.add(embedding_np)
_short_term_memory_items_list.append(memory_json_str)
if STORAGE_BACKEND == "SQLITE" and sqlite3:
with _get_sqlite_connection() as conn:
conn.execute("INSERT INTO memories (memory_json) VALUES (?)", (memory_json_str,))
conn.commit()
elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset:
all_mems_for_push = _long_term_memory_items_list + _short_term_memory_items_list
Dataset.from_dict({"memory_json": list(set(all_mems_for_push))}).push_to_hub(HF_MEMORY_DATASET_REPO, token=HF_TOKEN, private=True)
logger.info(f"Added memory. Short-term count: {_faiss_short_term_memory_index.ntotal}")
return True, "Memory added successfully."
except Exception as e:
logger.error(f"Error adding memory entry: {e}", exc_info=True)
return False, f"Error adding memory: {e}"
def search_memories(query: str, k: int = 3, threshold: float = 1.0) -> tuple[list[dict], str]:
if not _initialized: initialize_memory_system()
if not _embedder: return [], "uninitialized"
query_embedding = np.array(_embedder.encode([query]), dtype=np.float32)
final_results = {}
search_path = "short"
if _faiss_short_term_memory_index and _faiss_short_term_memory_index.ntotal > 0:
distances, indices = _faiss_short_term_memory_index.search(query_embedding, min(k, _faiss_short_term_memory_index.ntotal))
best_dist = distances[0][0] if len(distances[0]) > 0 else float('inf')
if best_dist < threshold:
logger.info(f"Found relevant short-term memories (best distance: {best_dist:.4f}).")
for i in indices[0]:
res = json.loads(_short_term_memory_items_list[i])
final_results[res['timestamp']] = res
return list(final_results.values()), search_path
logger.info("No relevant short-term memories found. Escalating to deep search on long-term memory.")
search_path = "deep"
if _faiss_long_term_memory_index and _faiss_long_term_memory_index.ntotal > 0:
distances, indices = _faiss_long_term_memory_index.search(query_embedding, min(k, _faiss_long_term_memory_index.ntotal))
for i in indices[0]:
res = json.loads(_long_term_memory_items_list[i])
final_results[res['timestamp']] = res
return list(final_results.values()), search_path
def retrieve_rules_semantic(query: str, k: int = 5) -> list[str]:
if not _initialized: initialize_memory_system()
if not _faiss_rules_index or _faiss_rules_index.ntotal == 0: return []
try:
q_embedding = np.array(_embedder.encode([query]), dtype=np.float32)
_, indices = _faiss_rules_index.search(q_embedding, min(k, _faiss_rules_index.ntotal))
return [_rules_items_list[i] for i in indices[0]]
except Exception as e:
logger.error(f"Error retrieving rules: {e}", exc_info=True)
return []
def get_all_memories_cached() -> list[dict]:
if not _initialized: initialize_memory_system()
all_mems = _long_term_memory_items_list + _short_term_memory_items_list
seen_ts = set()
unique_mem_dicts = []
for mem_json_str in reversed(all_mems):
try:
mem_dict = json.loads(mem_json_str)
if mem_dict['timestamp'] not in seen_ts:
unique_mem_dicts.append(mem_dict)
seen_ts.add(mem_dict['timestamp'])
except: continue
return unique_mem_dicts
# --- The rest of the utility functions (add_rule, get_rules, clear functions) remain the same ---
def add_rule_entry(rule_text: str):
global _rules_items_list, _faiss_rules_index
if not _initialized: initialize_memory_system()
if not _embedder: return False, "Embedder not initialized."
rule_text = rule_text.strip()
if not rule_text or rule_text in _rules_items_list: return False, "duplicate or empty"
if not re.match(r"\[(CORE_RULE|RESPONSE_PRINCIPLE|BEHAVIORAL_ADJUSTMENT|GENERAL_LEARNING)\|([\d\.]+?)\](.*)", rule_text, re.I|re.DOTALL):
return False, "Invalid rule format."
try:
embedding = _embedder.encode([rule_text], convert_to_tensor=False)
_faiss_rules_index.add(np.array(embedding, dtype=np.float32))
_rules_items_list.append(rule_text)
_rules_items_list.sort()
if STORAGE_BACKEND == "SQLITE" and sqlite3:
with _get_sqlite_connection() as conn:
conn.execute("INSERT OR IGNORE INTO rules (rule_text) VALUES (?)", (rule_text,))
conn.commit()
elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset:
Dataset.from_dict({"rule_text": list(_rules_items_list)}).push_to_hub(HF_RULES_DATASET_REPO, token=HF_TOKEN, private=True)
return True, "Rule added"
except Exception as e:
logger.error(f"Error adding rule: {e}", exc_info=True)
return False, str(e)
def get_all_rules_cached() -> list[str]:
if not _initialized: initialize_memory_system()
return list(_rules_items_list) |