broadfield-dev commited on
Commit
1682041
·
verified ·
1 Parent(s): e7a6f78

Update model_logic.py

Browse files
Files changed (1) hide show
  1. model_logic.py +484 -415
model_logic.py CHANGED
@@ -1,437 +1,506 @@
1
- # model_handler.py
2
  import os
3
- import requests
4
  import json
 
 
5
  import logging
6
- from dotenv import load_dotenv
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
 
8
- # Load environment variables from .env file
9
- load_dotenv()
10
 
11
- logging.basicConfig(
12
- level=logging.INFO,
13
- format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
14
- )
15
  logger = logging.getLogger(__name__)
16
-
17
- # Maps provider name (uppercase) to environment variable name for API key
18
- API_KEYS_ENV_VARS = {
19
- "HUGGINGFACE": 'HF_TOKEN', # Note: HF_TOKEN is often used for general HF auth
20
- "GROQ": 'GROQ_API_KEY',
21
- "OPENROUTER": 'OPENROUTER_API_KEY',
22
- "TOGETHERAI": 'TOGETHERAI_API_KEY',
23
- "COHERE": 'COHERE_API_KEY',
24
- "XAI": 'XAI_API_KEY',
25
- "OPENAI": 'OPENAI_API_KEY',
26
- "GOOGLE": 'GOOGLE_API_KEY', # Or GOOGLE_GEMINI_API_KEY etc.
27
- }
28
-
29
- API_URLS = {
30
- "HUGGINGFACE": 'https://api-inference.huggingface.co/models/',
31
- "GROQ": 'https://api.groq.com/openai/v1/chat/completions',
32
- "OPENROUTER": 'https://openrouter.ai/api/v1/chat/completions',
33
- "TOGETHERAI": 'https://api.together.ai/v1/chat/completions',
34
- "COHERE": 'https://api.cohere.ai/v1/chat', # v1 is common for chat, was v2 in ai-learn
35
- "XAI": 'https://api.x.ai/v1/chat/completions',
36
- "OPENAI": 'https://api.openai.com/v1/chat/completions',
37
- "GOOGLE": 'https://generativelanguage.googleapis.com/v1beta/models/',
38
- }
39
-
40
- # MODELS_BY_PROVIDER = json.load(open("./models.json")) ## commented for demo
41
- MODELS_BY_PROVIDER = {
42
- "groq": {
43
- "default": "llama3-8b-8192",
44
- "models": {
45
- "Llama 3 8B (Groq)": "llama3-8b-8192",
46
- }
47
- }
48
- }
49
-
50
- def _get_api_key(provider: str, ui_api_key_override: str = None) -> str | None:
51
- """
52
- Retrieves API key for a given provider.
53
- Priority: UI Override > Environment Variable from API_KEYS_ENV_VARS > Specific (e.g. HF_TOKEN for HuggingFace).
54
- """
55
- provider_upper = provider.upper()
56
- if ui_api_key_override and ui_api_key_override.strip():
57
- logger.debug(f"Using UI-provided API key for {provider_upper}.")
58
- return ui_api_key_override.strip()
59
-
60
- env_var_name = API_KEYS_ENV_VARS.get(provider_upper)
61
- if env_var_name:
62
- env_key = os.getenv(env_var_name)
63
- if env_key and env_key.strip():
64
- logger.debug(f"Using API key from env var '{env_var_name}' for {provider_upper}.")
65
- return env_key.strip()
66
-
67
- # Specific fallback for HuggingFace if HF_TOKEN is set and API_KEYS_ENV_VARS['HUGGINGFACE'] wasn't specific enough
68
- if provider_upper == 'HUGGINGFACE':
69
- hf_token_fallback = os.getenv("HF_TOKEN")
70
- if hf_token_fallback and hf_token_fallback.strip():
71
- logger.debug("Using HF_TOKEN as fallback for HuggingFace provider.")
72
- return hf_token_fallback.strip()
73
-
74
- logger.warning(f"API Key not found for provider '{provider_upper}'. Checked UI override and environment variable '{env_var_name or 'N/A'}'.")
75
- return None
76
-
77
- def get_available_providers() -> list[str]:
78
- """Returns a sorted list of available provider names (e.g., 'groq', 'openai')."""
79
- return sorted(list(MODELS_BY_PROVIDER.keys()))
80
-
81
- def get_model_display_names_for_provider(provider: str) -> list[str]:
82
- """Returns a sorted list of model display names for a given provider."""
83
- return sorted(list(MODELS_BY_PROVIDER.get(provider.lower(), {}).get("models", {}).keys()))
84
-
85
- def get_default_model_display_name_for_provider(provider: str) -> str | None:
86
- """Gets the default model's display name for a provider."""
87
- provider_data = MODELS_BY_PROVIDER.get(provider.lower(), {})
88
- models_dict = provider_data.get("models", {})
89
- default_model_id = provider_data.get("default")
90
-
91
- if default_model_id and models_dict:
92
- for display_name, model_id_val in models_dict.items():
93
- if model_id_val == default_model_id:
94
- return display_name
95
-
96
- # Fallback to the first model in the sorted list if default not found or not set
97
- if models_dict:
98
- sorted_display_names = sorted(list(models_dict.keys()))
99
- if sorted_display_names:
100
- return sorted_display_names[0]
101
- return None
102
-
103
- def get_model_id_from_display_name(provider: str, display_name: str) -> str | None:
104
- """Gets the actual model ID from its display name for a given provider."""
105
- models = MODELS_BY_PROVIDER.get(provider.lower(), {}).get("models", {})
106
- return models.get(display_name)
107
-
108
-
109
- def call_model_stream(provider: str, model_display_name: str, messages: list[dict], api_key_override: str = None, temperature: float = 0.7, max_tokens: int = None) -> iter:
110
- """
111
- Calls the specified model via its provider and streams the response.
112
- Handles provider-specific request formatting and error handling.
113
- Yields chunks of the response text or an error string.
114
- """
115
- provider_lower = provider.lower()
116
- api_key = _get_api_key(provider_lower, api_key_override)
117
- base_url = API_URLS.get(provider.upper())
118
- model_id = get_model_id_from_display_name(provider_lower, model_display_name)
119
-
120
- if not api_key:
121
- env_var_name = API_KEYS_ENV_VARS.get(provider.upper(), 'N/A')
122
- yield f"Error: API Key not found for {provider}. Please set it in the UI or env var '{env_var_name}'."
123
  return
124
- if not base_url:
125
- yield f"Error: Unknown provider '{provider}' or missing API URL configuration."
126
- return
127
- if not model_id:
128
- yield f"Error: Model ID not found for '{model_display_name}' under provider '{provider}'. Check configuration."
129
- return
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
130
 
131
- headers = {}
132
- payload = {}
133
- request_url = base_url
134
 
135
- logger.info(f"Streaming from {provider}/{model_display_name} (ID: {model_id})...")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
136
 
137
- # --- Standard OpenAI-compatible providers ---
138
- if provider_lower in ["groq", "openrouter", "togetherai", "openai", "xai"]:
139
- headers = {"Authorization": f"Bearer {api_key}", "Content-Type": "application/json"}
140
- payload = {"model": model_id, "messages": messages, "stream": True, "temperature": temperature}
141
- if max_tokens: payload["max_tokens"] = max_tokens
142
-
143
- if provider_lower == "openrouter":
144
- headers["HTTP-Referer"] = os.getenv("OPENROUTER_REFERRER") or "http://localhost/gradio" # Example Referer
145
- headers["X-Title"] = os.getenv("OPENROUTER_X_TITLE") or "Gradio AI Researcher" # Example Title
146
 
147
- try:
148
- response = requests.post(request_url, headers=headers, json=payload, stream=True, timeout=180)
149
- response.raise_for_status()
150
-
151
- # More robust SSE parsing
152
- buffer = ""
153
- for chunk in response.iter_content(chunk_size=None): # Process raw bytes
154
- buffer += chunk.decode('utf-8', errors='replace')
155
- while '\n\n' in buffer:
156
- event_str, buffer = buffer.split('\n\n', 1)
157
- if not event_str.strip(): continue
158
-
159
- content_chunk = ""
160
- for line in event_str.splitlines():
161
- if line.startswith('data: '):
162
- data_json = line[len('data: '):].strip()
163
- if data_json == '[DONE]':
164
- return # Stream finished
165
- try:
166
- data = json.loads(data_json)
167
- if data.get("choices") and len(data["choices"]) > 0:
168
- delta = data["choices"][0].get("delta", {})
169
- if delta and delta.get("content"):
170
- content_chunk += delta["content"]
171
- except json.JSONDecodeError:
172
- logger.warning(f"Failed to decode JSON from stream line: {data_json}")
173
- if content_chunk:
174
- yield content_chunk
175
- # Process any remaining buffer content (less common with '\n\n' delimiter)
176
- if buffer.strip():
177
- logger.debug(f"Remaining buffer after OpenAI-like stream: {buffer}")
178
-
179
-
180
- except requests.exceptions.HTTPError as e:
181
- err_msg = f"API HTTP Error ({e.response.status_code}): {e.response.text[:500]}"
182
- logger.error(f"{err_msg} for {provider}/{model_id}", exc_info=False)
183
- yield f"Error: {err_msg}"
184
- except requests.exceptions.RequestException as e:
185
- logger.error(f"API Request Error for {provider}/{model_id}: {e}", exc_info=False)
186
- yield f"Error: Could not connect to {provider} ({e})"
187
- except Exception as e:
188
- logger.exception(f"Unexpected error during {provider} stream:")
189
- yield f"Error: An unexpected error occurred: {e}"
190
- return
191
 
192
- # --- Google Gemini ---
193
- elif provider_lower == "google":
194
- system_instruction = None
195
- filtered_messages = []
196
- for msg in messages:
197
- if msg["role"] == "system": system_instruction = {"parts": [{"text": msg["content"]}]}
198
- else:
199
- role = "model" if msg["role"] == "assistant" else msg["role"]
200
- filtered_messages.append({"role": role, "parts": [{"text": msg["content"]}]})
201
-
202
- payload = {
203
- "contents": filtered_messages,
204
- "safetySettings": [ # Example: more permissive settings
205
- {"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT", "threshold": "BLOCK_NONE"},
206
- {"category": "HARM_CATEGORY_HATE_SPEECH", "threshold": "BLOCK_NONE"},
207
- {"category": "HARM_CATEGORY_HARASSMENT", "threshold": "BLOCK_NONE"},
208
- {"category": "HARM_CATEGORY_DANGEROUS_CONTENT", "threshold": "BLOCK_NONE"},
209
- ],
210
- "generationConfig": {"temperature": temperature}
211
- }
212
- if max_tokens: payload["generationConfig"]["maxOutputTokens"] = max_tokens
213
- if system_instruction: payload["system_instruction"] = system_instruction
214
 
215
- request_url = f"{base_url}{model_id}:streamGenerateContent?key={api_key}" # API key in query param
216
- headers = {"Content-Type": "application/json"}
217
-
218
- try:
219
- response = requests.post(request_url, headers=headers, json=payload, stream=True, timeout=180)
220
- response.raise_for_status()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
221
 
222
- # Google's stream is a bit different, often newline-delimited JSON arrays/objects
223
- buffer = ""
224
- for chunk in response.iter_content(chunk_size=None):
225
- buffer += chunk.decode('utf-8', errors='replace')
226
- # Google might send chunks that are not complete JSON objects, or multiple objects
227
- # A common pattern is [ {obj1} , {obj2} ] where chunks split mid-array or mid-object.
228
- # This parsing needs to be robust. A simple split by '\n' might not always work if JSON is pretty-printed.
229
- # The previous code's `json.loads(f"[{decoded_line}]")` was an attempt to handle this.
230
- # For now, let's assume newline delimited for simplicity, but this is a known tricky part.
231
-
232
- while '\n' in buffer:
233
- line, buffer = buffer.split('\n', 1)
234
- line = line.strip()
235
- if not line: continue
236
- if line.startswith(','): line = line[1:] # Handle leading commas if splitting an array
237
-
238
- try:
239
- # Remove "data: " prefix if present (less common for Gemini direct API but good practice)
240
- if line.startswith('data: '): line = line[len('data: '):]
241
-
242
- # Gemini often streams an array of objects, or just one object.
243
- # Try to parse as a single object first. If fails, try as array.
244
- parsed_data = None
245
- try:
246
- parsed_data = json.loads(line)
247
- except json.JSONDecodeError:
248
- # If it's part of an array, it might be missing brackets.
249
- # This heuristic is fragile. A proper SSE parser or stateful JSON parser is better.
250
- if line.startswith('{') and line.endswith('}'): # Looks like a complete object
251
- pass # already tried json.loads
252
- # Try to wrap with [] if it seems like a list content without brackets
253
- elif line.startswith('{') or line.endswith('}'):
254
- try:
255
- temp_parsed_list = json.loads(f"[{line}]")
256
- if temp_parsed_list and isinstance(temp_parsed_list, list):
257
- parsed_data = temp_parsed_list[0] # take first if it becomes a list
258
- except json.JSONDecodeError:
259
- logger.warning(f"Google: Still can't parse line even with array wrap: {line}")
260
-
261
- if parsed_data:
262
- data_to_process = [parsed_data] if isinstance(parsed_data, dict) else parsed_data # Ensure list
263
- for event_data in data_to_process:
264
- if not isinstance(event_data, dict): continue
265
- if event_data.get("candidates"):
266
- for candidate in event_data["candidates"]:
267
- if candidate.get("content", {}).get("parts"):
268
- for part in candidate["content"]["parts"]:
269
- if part.get("text"):
270
- yield part["text"]
271
- except json.JSONDecodeError:
272
- logger.warning(f"Google: JSONDecodeError for line: {line}")
273
- except Exception as e_google_proc:
274
- logger.error(f"Google: Error processing stream data: {e_google_proc}, Line: {line}")
275
-
276
- except requests.exceptions.HTTPError as e:
277
- err_msg = f"Google API HTTP Error ({e.response.status_code}): {e.response.text[:500]}"
278
- logger.error(err_msg, exc_info=False)
279
- yield f"Error: {err_msg}"
280
- except Exception as e:
281
- logger.exception(f"Unexpected error during Google stream:")
282
- yield f"Error: An unexpected error occurred with Google API: {e}"
283
- return
284
-
285
- # --- Cohere ---
286
- elif provider_lower == "cohere":
287
- headers = {"Authorization": f"Bearer {api_key}", "Content-Type": "application/json", "Accept": "application/json"}
288
 
289
- # Cohere message format
290
- chat_history_cohere = []
291
- preamble_cohere = None
292
- user_message_cohere = ""
293
-
294
- temp_messages = list(messages) # Work with a copy
295
- if temp_messages and temp_messages[0]["role"] == "system":
296
- preamble_cohere = temp_messages.pop(0)["content"]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
297
 
298
- if temp_messages:
299
- user_message_cohere = temp_messages.pop()["content"] # Last message is the current user query
300
- for msg in temp_messages: # Remaining are history
301
- role = "USER" if msg["role"] == "user" else "CHATBOT"
302
- chat_history_cohere.append({"role": role, "message": msg["content"]})
 
 
 
 
 
 
 
 
 
 
 
 
 
 
303
 
304
- if not user_message_cohere:
305
- yield "Error: User message is empty for Cohere."
306
- return
307
-
308
- payload = {
309
- "model": model_id,
310
- "message": user_message_cohere,
311
- "stream": True,
312
- "temperature": temperature
313
- }
314
- if max_tokens: payload["max_tokens"] = max_tokens # Cohere uses max_tokens
315
- if chat_history_cohere: payload["chat_history"] = chat_history_cohere
316
- if preamble_cohere: payload["preamble"] = preamble_cohere
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
317
 
318
- try:
319
- response = requests.post(base_url, headers=headers, json=payload, stream=True, timeout=180)
320
- response.raise_for_status()
321
-
322
- # Cohere SSE format is event: type\ndata: {json}\n\n
323
- buffer = ""
324
- for chunk_bytes in response.iter_content(chunk_size=None):
325
- buffer += chunk_bytes.decode('utf-8', errors='replace')
326
- while '\n\n' in buffer:
327
- event_str, buffer = buffer.split('\n\n', 1)
328
- if not event_str.strip(): continue
329
-
330
- event_type = None
331
- data_json_str = None
332
- for line in event_str.splitlines():
333
- if line.startswith("event:"): event_type = line[len("event:"):].strip()
334
- elif line.startswith("data:"): data_json_str = line[len("data:"):].strip()
335
-
336
- if data_json_str:
337
- try:
338
- data = json.loads(data_json_str)
339
- if event_type == "text-generation" and "text" in data:
340
- yield data["text"]
341
- elif event_type == "stream-end":
342
- logger.debug(f"Cohere stream ended. Finish reason: {data.get('finish_reason')}")
343
- return
344
- except json.JSONDecodeError:
345
- logger.warning(f"Cohere: Failed to decode JSON: {data_json_str}")
346
- if buffer.strip():
347
- logger.debug(f"Cohere: Remaining buffer: {buffer.strip()}")
348
-
349
-
350
- except requests.exceptions.HTTPError as e:
351
- err_msg = f"Cohere API HTTP Error ({e.response.status_code}): {e.response.text[:500]}"
352
- logger.error(err_msg, exc_info=False)
353
- yield f"Error: {err_msg}"
354
- except Exception as e:
355
- logger.exception(f"Unexpected error during Cohere stream:")
356
- yield f"Error: An unexpected error occurred with Cohere API: {e}"
357
- return
358
-
359
- # --- HuggingFace Inference API (Basic TGI support) ---
360
- # This is very basic and might not work for all models or complex scenarios.
361
- # Assumes model is deployed with Text Generation Inference (TGI) and supports streaming.
362
- elif provider_lower == "huggingface":
363
- headers = {"Authorization": f"Bearer {api_key}", "Content-Type": "application/json"}
364
- # Construct prompt string for TGI (often needs specific formatting)
365
- # This is a generic attempt, specific models might need <|user|>, <|assistant|> etc.
366
- prompt_parts = []
367
- for msg in messages:
368
- role_prefix = ""
369
- if msg['role'] == 'system': role_prefix = "System: " # Or might be ignored/handled differently
370
- elif msg['role'] == 'user': role_prefix = "User: "
371
- elif msg['role'] == 'assistant': role_prefix = "Assistant: "
372
- prompt_parts.append(f"{role_prefix}{msg['content']}")
373
 
374
- # TGI typically expects a final "Assistant: " to start generating from
375
- tgi_prompt = "\n".join(prompt_parts) + "\nAssistant: "
376
-
377
- payload = {
378
- "inputs": tgi_prompt,
379
- "parameters": {
380
- "temperature": temperature if temperature > 0 else 0.01, # TGI needs temp > 0 for sampling
381
- "max_new_tokens": max_tokens or 1024, # Default TGI max_new_tokens
382
- "return_full_text": False, # We only want generated part
383
- "do_sample": True if temperature > 0 else False,
384
- },
385
- "stream": True
386
- }
387
- request_url = f"{base_url}{model_id}" # Model ID is part of URL path for HF
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
388
 
 
389
  try:
390
- response = requests.post(request_url, headers=headers, json=payload, stream=True, timeout=180)
391
- response.raise_for_status()
392
-
393
- # TGI SSE stream: data: {"token": {"id": ..., "text": "...", "logprob": ..., "special": ...}}
394
- # Or sometimes just data: "text_chunk" for simpler models/configs
395
- buffer = ""
396
- for chunk_bytes in response.iter_content(chunk_size=None):
397
- buffer += chunk_bytes.decode('utf-8', errors='replace')
398
- while '\n' in buffer: # TGI often uses single newline
399
- line, buffer = buffer.split('\n', 1)
400
- line = line.strip()
401
- if not line: continue
402
-
403
- if line.startswith('data:'):
404
- data_json_str = line[len('data:'):].strip()
405
- try:
406
- data = json.loads(data_json_str)
407
- if "token" in data and "text" in data["token"]:
408
- yield data["token"]["text"]
409
- elif "generated_text" in data and data.get("details") is None: # Sometimes a final non-streaming like object might appear
410
- # This case is tricky, if it's the *only* thing then it's not really streaming
411
- pass # For now, ignore if it's not a token object
412
- # Some TGI might send raw text if not fully SSE compliant for stream
413
- # elif isinstance(data, str): yield data
414
-
415
- except json.JSONDecodeError:
416
- # If it's not JSON, it might be a raw string (less common for TGI stream=True)
417
- # For safety, only yield if it's a clear text string
418
- if not data_json_str.startswith('{') and not data_json_str.startswith('['):
419
- yield data_json_str
420
- else:
421
- logger.warning(f"HF: Failed to decode JSON and not raw string: {data_json_str}")
422
- if buffer.strip():
423
- logger.debug(f"HF: Remaining buffer: {buffer.strip()}")
424
-
425
-
426
- except requests.exceptions.HTTPError as e:
427
- err_msg = f"HF API HTTP Error ({e.response.status_code}): {e.response.text[:500]}"
428
- logger.error(err_msg, exc_info=False)
429
- yield f"Error: {err_msg}"
430
- except Exception as e:
431
- logger.exception(f"Unexpected error during HF stream:")
432
- yield f"Error: An unexpected error occurred with HF API: {e}"
433
- return
434
 
435
- else:
436
- yield f"Error: Provider '{provider}' is not configured for streaming in this handler."
437
- return
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # memory_logic.py
2
  import os
 
3
  import json
4
+ import time
5
+ from datetime import datetime
6
  import logging
7
+ import re
8
+ import threading
9
+
10
+ # Conditionally import heavy dependencies
11
+ try:
12
+ from sentence_transformers import SentenceTransformer
13
+ import faiss
14
+ import numpy as np
15
+ except ImportError:
16
+ SentenceTransformer, faiss, np = None, None, None
17
+ logging.warning("SentenceTransformers, FAISS, or NumPy not installed. Semantic search will be unavailable.")
18
+
19
+ try:
20
+ import sqlite3
21
+ except ImportError:
22
+ sqlite3 = None
23
+ logging.warning("sqlite3 module not available. SQLite backend will be unavailable.")
24
+
25
+ try:
26
+ from datasets import load_dataset, Dataset
27
+ except ImportError:
28
+ load_dataset, Dataset = None, None
29
+ logging.warning("datasets library not installed. Hugging Face Dataset backend will be unavailable.")
30
 
 
 
31
 
 
 
 
 
32
  logger = logging.getLogger(__name__)
33
+ # Suppress verbose logs from dependencies
34
+ for lib_name in ["sentence_transformers", "faiss", "datasets", "huggingface_hub"]:
35
+ if logging.getLogger(lib_name): # Check if logger exists
36
+ logging.getLogger(lib_name).setLevel(logging.WARNING)
37
+
38
+
39
+ # --- Configuration (Read directly from environment variables) ---
40
+ STORAGE_BACKEND = os.getenv("STORAGE_BACKEND", "HF_DATASET").upper() #HF_DATASET, RAM, SQLITE
41
+ SQLITE_DB_PATH = os.getenv("SQLITE_DB_PATH", "app_data/ai_memory.db") # Changed default path
42
+ HF_TOKEN = os.getenv("HF_TOKEN")
43
+ HF_MEMORY_DATASET_REPO = os.getenv("HF_MEMORY_DATASET_REPO", "broadfield-dev/ai-brain") # Example
44
+ HF_RULES_DATASET_REPO = os.getenv("HF_RULES_DATASET_REPO", "broadfield-dev/ai-rules") # Example
45
+
46
+ # --- Globals for RAG within this module ---
47
+ _embedder = None
48
+ _dimension = 384 # Default, will be set by embedder
49
+ _faiss_memory_index = None
50
+ _memory_items_list = [] # Stores JSON strings of memory objects for RAM, or loaded from DB/HF
51
+ _faiss_rules_index = None
52
+ _rules_items_list = [] # Stores rule text strings
53
+
54
+ _initialized = False
55
+ _init_lock = threading.Lock()
56
+
57
+ # --- Helper: SQLite Connection ---
58
+ def _get_sqlite_connection():
59
+ if not sqlite3:
60
+ raise ImportError("sqlite3 module is required for SQLite backend but not found.")
61
+ db_dir = os.path.dirname(SQLITE_DB_PATH)
62
+ if db_dir and not os.path.exists(db_dir):
63
+ os.makedirs(db_dir, exist_ok=True)
64
+ return sqlite3.connect(SQLITE_DB_PATH, timeout=10) # Added timeout
65
+
66
+ def _init_sqlite_tables():
67
+ if STORAGE_BACKEND != "SQLITE" or not sqlite3:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68
  return
69
+ try:
70
+ with _get_sqlite_connection() as conn:
71
+ cursor = conn.cursor()
72
+ # Stores JSON string of the memory object
73
+ cursor.execute("""
74
+ CREATE TABLE IF NOT EXISTS memories (
75
+ id INTEGER PRIMARY KEY AUTOINCREMENT,
76
+ memory_json TEXT NOT NULL,
77
+ # Optionally add embedding here if not using separate FAISS index
78
+ # embedding BLOB,
79
+ created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
80
+ )
81
+ """)
82
+ # Stores the rule text directly
83
+ cursor.execute("""
84
+ CREATE TABLE IF NOT EXISTS rules (
85
+ id INTEGER PRIMARY KEY AUTOINCREMENT,
86
+ rule_text TEXT NOT NULL UNIQUE,
87
+ # embedding BLOB,
88
+ created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
89
+ )
90
+ """)
91
+ conn.commit()
92
+ logger.info("SQLite tables for memories and rules checked/created.")
93
+ except Exception as e:
94
+ logger.error(f"SQLite table initialization error: {e}", exc_info=True)
95
+
96
+ # --- Initialization ---
97
+ def initialize_memory_system():
98
+ global _initialized, _embedder, _dimension, _faiss_memory_index, _memory_items_list, _faiss_rules_index, _rules_items_list
99
+
100
+ with _init_lock:
101
+ if _initialized:
102
+ logger.info("Memory system already initialized.")
103
+ return
104
 
105
+ logger.info(f"Initializing memory system with backend: {STORAGE_BACKEND}")
106
+ init_start_time = time.time()
 
107
 
108
+ # 1. Load Sentence Transformer Model (always needed for semantic operations)
109
+ if not SentenceTransformer or not faiss or not np:
110
+ logger.error("Core RAG libraries (SentenceTransformers, FAISS, NumPy) not available. Cannot initialize semantic memory.")
111
+ _initialized = False # Mark as not properly initialized
112
+ return
113
+
114
+ if not _embedder:
115
+ try:
116
+ logger.info("Loading SentenceTransformer model (all-MiniLM-L6-v2)...")
117
+ _embedder = SentenceTransformer('all-MiniLM-L6-v2', cache_folder="./sentence_transformer_cache")
118
+ _dimension = _embedder.get_sentence_embedding_dimension() or 384
119
+ logger.info(f"SentenceTransformer loaded. Dimension: {_dimension}")
120
+ except Exception as e:
121
+ logger.critical(f"FATAL: Error loading SentenceTransformer: {e}", exc_info=True)
122
+ _initialized = False
123
+ return # Cannot proceed without embedder
124
+
125
+ # 2. Initialize SQLite if used
126
+ if STORAGE_BACKEND == "SQLITE":
127
+ _init_sqlite_tables()
128
+
129
+ # 3. Load Memories
130
+ logger.info("Loading memories...")
131
+ temp_memories_json = []
132
+ if STORAGE_BACKEND == "RAM":
133
+ pass
134
+ elif STORAGE_BACKEND == "SQLITE" and sqlite3:
135
+ try:
136
+ with _get_sqlite_connection() as conn:
137
+ temp_memories_json = [row[0] for row in conn.execute("SELECT memory_json FROM memories ORDER BY created_at ASC")]
138
+ except Exception as e: logger.error(f"Error loading memories from SQLite: {e}")
139
+ elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset and load_dataset:
140
+ try:
141
+ logger.info(f"Attempting to load memories from HF Dataset: {HF_MEMORY_DATASET_REPO}")
142
+ dataset = load_dataset(HF_MEMORY_DATASET_REPO, token=HF_TOKEN, trust_remote_code=True)
143
+ if "train" in dataset and "memory_json" in dataset["train"].column_names:
144
+ temp_memories_json = [m_json for m_json in dataset["train"]["memory_json"] if isinstance(m_json, str)]
145
+ else: logger.warning(f"HF Dataset {HF_MEMORY_DATASET_REPO} for memories not found or 'memory_json' column missing.")
146
+ except Exception as e: logger.error(f"Error loading memories from HF Dataset ({HF_MEMORY_DATASET_REPO}): {e}")
147
+
148
+ _memory_items_list = temp_memories_json
149
+ logger.info(f"Loaded {len(_memory_items_list)} memory items from {STORAGE_BACKEND}.")
150
+
151
+ # 4. Build/Load FAISS Memory Index
152
+ _faiss_memory_index = faiss.IndexFlatL2(_dimension)
153
+ if _memory_items_list:
154
+ logger.info(f"Building FAISS index for {len(_memory_items_list)} memories...")
155
+ # Extract text to embed from memory JSON objects
156
+ texts_to_embed_mem = []
157
+ for mem_json_str in _memory_items_list:
158
+ try:
159
+ mem_obj = json.loads(mem_json_str)
160
+ # Consistent embedding strategy: user input + bot response + takeaway
161
+ text = f"User: {mem_obj.get('user_input','')}\nAI: {mem_obj.get('bot_response','')}\nTakeaway: {mem_obj.get('metrics',{}).get('takeaway','N/A')}"
162
+ texts_to_embed_mem.append(text)
163
+ except json.JSONDecodeError:
164
+ logger.warning(f"Skipping malformed memory JSON for FAISS indexing: {mem_json_str[:100]}")
165
+
166
+ if texts_to_embed_mem:
167
+ try:
168
+ embeddings = _embedder.encode(texts_to_embed_mem, convert_to_tensor=False, show_progress_bar=False)
169
+ embeddings_np = np.array(embeddings, dtype=np.float32)
170
+ if embeddings_np.ndim == 2 and embeddings_np.shape[0] == len(texts_to_embed_mem) and embeddings_np.shape[1] == _dimension:
171
+ _faiss_memory_index.add(embeddings_np)
172
+ else: logger.error(f"Memory embeddings shape error. Expected ({len(texts_to_embed_mem)}, {_dimension}), Got {embeddings_np.shape if hasattr(embeddings_np, 'shape') else 'N/A'}")
173
+ except Exception as e_faiss_mem: logger.error(f"Error building FAISS memory index: {e_faiss_mem}")
174
+ logger.info(f"FAISS memory index built. Total items: {_faiss_memory_index.ntotal if _faiss_memory_index else 'N/A'}")
175
+
176
+
177
+ # 5. Load Rules
178
+ logger.info("Loading rules...")
179
+ temp_rules_text = []
180
+ if STORAGE_BACKEND == "RAM":
181
+ pass
182
+ elif STORAGE_BACKEND == "SQLITE" and sqlite3:
183
+ try:
184
+ with _get_sqlite_connection() as conn:
185
+ temp_rules_text = [row[0] for row in conn.execute("SELECT rule_text FROM rules ORDER BY created_at ASC")]
186
+ except Exception as e: logger.error(f"Error loading rules from SQLite: {e}")
187
+ elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset and load_dataset:
188
+ try:
189
+ logger.info(f"Attempting to load rules from HF Dataset: {HF_RULES_DATASET_REPO}")
190
+ dataset = load_dataset(HF_RULES_DATASET_REPO, token=HF_TOKEN, trust_remote_code=True)
191
+ if "train" in dataset and "rule_text" in dataset["train"].column_names:
192
+ temp_rules_text = [r_text for r_text in dataset["train"]["rule_text"] if isinstance(r_text, str) and r_text.strip()]
193
+ else: logger.warning(f"HF Dataset {HF_RULES_DATASET_REPO} for rules not found or 'rule_text' column missing.")
194
+ except Exception as e: logger.error(f"Error loading rules from HF Dataset ({HF_RULES_DATASET_REPO}): {e}")
195
+
196
+ _rules_items_list = sorted(list(set(temp_rules_text))) # Ensure unique and sorted
197
+ logger.info(f"Loaded {len(_rules_items_list)} rule items from {STORAGE_BACKEND}.")
198
+
199
+ # 6. Build/Load FAISS Rules Index
200
+ _faiss_rules_index = faiss.IndexFlatL2(_dimension)
201
+ if _rules_items_list:
202
+ logger.info(f"Building FAISS index for {len(_rules_items_list)} rules...")
203
+ if _rules_items_list: # Check again in case it became empty after filtering
204
+ try:
205
+ embeddings = _embedder.encode(_rules_items_list, convert_to_tensor=False, show_progress_bar=False)
206
+ embeddings_np = np.array(embeddings, dtype=np.float32)
207
+ if embeddings_np.ndim == 2 and embeddings_np.shape[0] == len(_rules_items_list) and embeddings_np.shape[1] == _dimension:
208
+ _faiss_rules_index.add(embeddings_np)
209
+ else: logger.error(f"Rule embeddings shape error. Expected ({len(_rules_items_list)}, {_dimension}), Got {embeddings_np.shape if hasattr(embeddings_np, 'shape') else 'N/A'}")
210
+ except Exception as e_faiss_rule: logger.error(f"Error building FAISS rule index: {e_faiss_rule}")
211
+ logger.info(f"FAISS rules index built. Total items: {_faiss_rules_index.ntotal if _faiss_rules_index else 'N/A'}")
212
+
213
+ _initialized = True
214
+ logger.info(f"Memory system initialization complete in {time.time() - init_start_time:.2f}s")
215
+
216
+
217
+ # --- Memory Operations (Semantic) ---
218
+ def add_memory_entry(user_input: str, metrics: dict, bot_response: str) -> tuple[bool, str]:
219
+ """Adds a memory entry to the configured backend and FAISS index."""
220
+ global _memory_items_list, _faiss_memory_index
221
+ if not _initialized: initialize_memory_system()
222
+ if not _embedder or not _faiss_memory_index:
223
+ return False, "Memory system or embedder not initialized for adding memory."
224
+
225
+ memory_obj = {
226
+ "user_input": user_input,
227
+ "metrics": metrics,
228
+ "bot_response": bot_response,
229
+ "timestamp": datetime.utcnow().isoformat()
230
+ }
231
+ memory_json_str = json.dumps(memory_obj)
232
 
233
+ text_to_embed = f"User: {user_input}\nAI: {bot_response}\nTakeaway: {metrics.get('takeaway', 'N/A')}"
234
+
235
+ try:
236
+ embedding = _embedder.encode([text_to_embed], convert_to_tensor=False)
237
+ embedding_np = np.array(embedding, dtype=np.float32).reshape(1, -1)
 
 
 
 
238
 
239
+ if embedding_np.shape != (1, _dimension):
240
+ logger.error(f"Memory embedding shape error: {embedding_np.shape}. Expected (1, {_dimension})")
241
+ return False, "Embedding shape error."
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
242
 
243
+ # Add to FAISS
244
+ _faiss_memory_index.add(embedding_np)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
245
 
246
+ # Add to in-memory list
247
+ _memory_items_list.append(memory_json_str)
248
+
249
+ # Add to persistent storage
250
+ if STORAGE_BACKEND == "SQLITE" and sqlite3:
251
+ with _get_sqlite_connection() as conn:
252
+ conn.execute("INSERT INTO memories (memory_json) VALUES (?)", (memory_json_str,))
253
+ conn.commit()
254
+ elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset:
255
+ # This can be slow, consider batching or async push
256
+ logger.info(f"Pushing {len(_memory_items_list)} memories to HF Hub: {HF_MEMORY_DATASET_REPO}")
257
+ Dataset.from_dict({"memory_json": list(_memory_items_list)}).push_to_hub(HF_MEMORY_DATASET_REPO, token=HF_TOKEN, private=True) # Ensure 'private' as needed
258
+
259
+ logger.info(f"Added memory. RAM: {len(_memory_items_list)}, FAISS: {_faiss_memory_index.ntotal}")
260
+ return True, "Memory added successfully."
261
+ except Exception as e:
262
+ logger.error(f"Error adding memory entry: {e}", exc_info=True)
263
+ # TODO: Potential rollback logic if FAISS add succeeded but backend failed (complex)
264
+ return False, f"Error adding memory: {e}"
265
+
266
+ def retrieve_memories_semantic(query: str, k: int = 3) -> list[dict]:
267
+ """Retrieves k most relevant memories using semantic search."""
268
+ if not _initialized: initialize_memory_system()
269
+ if not _embedder or not _faiss_memory_index or _faiss_memory_index.ntotal == 0:
270
+ logger.debug("Cannot retrieve memories: Embedder, FAISS index not ready, or index is empty.")
271
+ return []
272
+
273
+ try:
274
+ query_embedding = _embedder.encode([query], convert_to_tensor=False)
275
+ query_embedding_np = np.array(query_embedding, dtype=np.float32).reshape(1, -1)
276
+
277
+ if query_embedding_np.shape[1] != _dimension:
278
+ logger.error(f"Query embedding dimension mismatch. Expected {_dimension}, got {query_embedding_np.shape[1]}")
279
+ return []
280
 
281
+ distances, indices = _faiss_memory_index.search(query_embedding_np, min(k, _faiss_memory_index.ntotal))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
282
 
283
+ results = []
284
+ for i in indices[0]:
285
+ if 0 <= i < len(_memory_items_list):
286
+ try:
287
+ results.append(json.loads(_memory_items_list[i]))
288
+ except json.JSONDecodeError:
289
+ logger.warning(f"Could not parse memory JSON from list at index {i}")
290
+ else:
291
+ logger.warning(f"FAISS index {i} out of bounds for memory_items_list (len: {len(_memory_items_list)})")
292
+
293
+ logger.debug(f"Retrieved {len(results)} memories semantically for query: '{query[:50]}...'")
294
+ return results
295
+ except Exception as e:
296
+ logger.error(f"Error retrieving memories semantically: {e}", exc_info=True)
297
+ return []
298
+
299
+
300
+ # --- Rule (Insight) Operations (Semantic) ---
301
+ def add_rule_entry(rule_text: str) -> tuple[bool, str]:
302
+ """Adds a rule if valid and not a duplicate. Updates backend and FAISS."""
303
+ global _rules_items_list, _faiss_rules_index
304
+ if not _initialized: initialize_memory_system()
305
+ if not _embedder or not _faiss_rules_index:
306
+ return False, "Rule system or embedder not initialized."
307
+
308
+ rule_text = rule_text.strip()
309
+ if not rule_text: return False, "Rule text cannot be empty."
310
+ if not re.match(r"\[(CORE_RULE|RESPONSE_PRINCIPLE|BEHAVIORAL_ADJUSTMENT|GENERAL_LEARNING)\|([\d\.]+?)\](.*)", rule_text, re.I|re.DOTALL):
311
+ return False, "Invalid rule format."
312
+ if rule_text in _rules_items_list:
313
+ return False, "duplicate"
314
+
315
+ try:
316
+ embedding = _embedder.encode([rule_text], convert_to_tensor=False)
317
+ embedding_np = np.array(embedding, dtype=np.float32).reshape(1, -1)
318
+
319
+ if embedding_np.shape != (1, _dimension):
320
+ return False, "Rule embedding shape error."
321
+
322
+ _faiss_rules_index.add(embedding_np)
323
+ _rules_items_list.append(rule_text)
324
+ _rules_items_list.sort()
325
+
326
+ if STORAGE_BACKEND == "SQLITE" and sqlite3:
327
+ with _get_sqlite_connection() as conn:
328
+ conn.execute("INSERT OR IGNORE INTO rules (rule_text) VALUES (?)", (rule_text,))
329
+ conn.commit()
330
+ elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset:
331
+ logger.info(f"Pushing {len(_rules_items_list)} rules to HF Hub: {HF_RULES_DATASET_REPO}")
332
+ Dataset.from_dict({"rule_text": list(_rules_items_list)}).push_to_hub(HF_RULES_DATASET_REPO, token=HF_TOKEN, private=True)
333
 
334
+ logger.info(f"Added rule. RAM: {len(_rules_items_list)}, FAISS: {_faiss_rules_index.ntotal}")
335
+ return True, "Rule added successfully."
336
+ except Exception as e:
337
+ logger.error(f"Error adding rule entry: {e}", exc_info=True)
338
+ # Basic rollback if FAISS add succeeded
339
+ if rule_text in _rules_items_list and _faiss_rules_index.ntotal > 0: # Crude check
340
+ # A full rollback would involve rebuilding FAISS index from _rules_items_list before append.
341
+ # For simplicity, this is omitted here. State could be inconsistent on error.
342
+ pass
343
+ return False, f"Error adding rule: {e}"
344
+
345
+ def retrieve_rules_semantic(query: str, k: int = 5) -> list[str]:
346
+ """Retrieves k most relevant rules using semantic search."""
347
+ if not _initialized: initialize_memory_system()
348
+ if not _embedder or not _faiss_rules_index or _faiss_rules_index.ntotal == 0:
349
+ return []
350
+ try:
351
+ query_embedding = _embedder.encode([query], convert_to_tensor=False)
352
+ query_embedding_np = np.array(query_embedding, dtype=np.float32).reshape(1, -1)
353
 
354
+ if query_embedding_np.shape[1] != _dimension: return []
355
+
356
+ distances, indices = _faiss_rules_index.search(query_embedding_np, min(k, _faiss_rules_index.ntotal))
357
+ results = [_rules_items_list[i] for i in indices[0] if 0 <= i < len(_rules_items_list)]
358
+ logger.debug(f"Retrieved {len(results)} rules semantically for query: '{query[:50]}...'")
359
+ return results
360
+ except Exception as e:
361
+ logger.error(f"Error retrieving rules semantically: {e}", exc_info=True)
362
+ return []
363
+
364
+ def remove_rule_entry(rule_text_to_delete: str) -> bool:
365
+ """Removes a rule from backend and rebuilds FAISS for rules."""
366
+ global _rules_items_list, _faiss_rules_index
367
+ if not _initialized: initialize_memory_system()
368
+ if not _embedder or not _faiss_rules_index: return False
369
+
370
+ rule_text_to_delete = rule_text_to_delete.strip()
371
+ if rule_text_to_delete not in _rules_items_list:
372
+ return False # Not found
373
+
374
+ try:
375
+ _rules_items_list.remove(rule_text_to_delete)
376
+ _rules_items_list.sort() # Maintain sorted order
377
+
378
+ # Rebuild FAISS index for rules (simplest way to ensure consistency after removal)
379
+ new_faiss_rules_index = faiss.IndexFlatL2(_dimension)
380
+ if _rules_items_list:
381
+ embeddings = _embedder.encode(_rules_items_list, convert_to_tensor=False)
382
+ embeddings_np = np.array(embeddings, dtype=np.float32)
383
+ if embeddings_np.ndim == 2 and embeddings_np.shape[0] == len(_rules_items_list) and embeddings_np.shape[1] == _dimension:
384
+ new_faiss_rules_index.add(embeddings_np)
385
+ else: # Should not happen if list is consistent
386
+ logger.error("Error rebuilding FAISS for rules after removal: Embedding shape error. State might be inconsistent.")
387
+ # Attempt to revert _rules_items_list (add back the rule)
388
+ _rules_items_list.append(rule_text_to_delete)
389
+ _rules_items_list.sort()
390
+ return False # Indicate failure
391
+ _faiss_rules_index = new_faiss_rules_index
392
 
393
+ # Remove from persistent storage
394
+ if STORAGE_BACKEND == "SQLITE" and sqlite3:
395
+ with _get_sqlite_connection() as conn:
396
+ conn.execute("DELETE FROM rules WHERE rule_text = ?", (rule_text_to_delete,))
397
+ conn.commit()
398
+ elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset:
399
+ Dataset.from_dict({"rule_text": list(_rules_items_list)}).push_to_hub(HF_RULES_DATASET_REPO, token=HF_TOKEN, private=True)
400
+
401
+ logger.info(f"Removed rule. RAM: {len(_rules_items_list)}, FAISS: {_faiss_rules_index.ntotal}")
402
+ return True
403
+ except Exception as e:
404
+ logger.error(f"Error removing rule entry: {e}", exc_info=True)
405
+ # Potential partial failure, state might be inconsistent.
406
+ return False
407
+
408
+ # --- Utility functions to get all data (for UI display, etc.) ---
409
+ def get_all_rules_cached() -> list[str]:
410
+ if not _initialized: initialize_memory_system()
411
+ return list(_rules_items_list)
412
+
413
+ def get_all_memories_cached() -> list[dict]:
414
+ if not _initialized: initialize_memory_system()
415
+ # Convert JSON strings to dicts for easier use by UI
416
+ mem_dicts = []
417
+ for mem_json_str in _memory_items_list:
418
+ try: mem_dicts.append(json.loads(mem_json_str))
419
+ except: pass # Ignore parse errors for display
420
+ return mem_dicts
421
+
422
+ def clear_all_memory_data_backend() -> bool:
423
+ """Clears all memories from backend and resets in-memory FAISS/list."""
424
+ global _memory_items_list, _faiss_memory_index
425
+ if not _initialized: initialize_memory_system()
426
+
427
+ success = True
428
+ try:
429
+ if STORAGE_BACKEND == "SQLITE" and sqlite3:
430
+ with _get_sqlite_connection() as conn: conn.execute("DELETE FROM memories"); conn.commit()
431
+ elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset:
432
+ # Deleting from HF usually means pushing an empty dataset
433
+ Dataset.from_dict({"memory_json": []}).push_to_hub(HF_MEMORY_DATASET_REPO, token=HF_TOKEN, private=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
434
 
435
+ _memory_items_list = []
436
+ if _faiss_memory_index: _faiss_memory_index.reset() # Clear FAISS index
437
+ logger.info("All memories cleared from backend and in-memory stores.")
438
+ except Exception as e:
439
+ logger.error(f"Error clearing all memory data: {e}")
440
+ success = False
441
+ return success
442
+
443
+ def clear_all_rules_data_backend() -> bool:
444
+ """Clears all rules from backend and resets in-memory FAISS/list."""
445
+ global _rules_items_list, _faiss_rules_index
446
+ if not _initialized: initialize_memory_system()
447
+
448
+ success = True
449
+ try:
450
+ if STORAGE_BACKEND == "SQLITE" and sqlite3:
451
+ with _get_sqlite_connection() as conn: conn.execute("DELETE FROM rules"); conn.commit()
452
+ elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset:
453
+ Dataset.from_dict({"rule_text": []}).push_to_hub(HF_RULES_DATASET_REPO, token=HF_TOKEN, private=True)
454
+
455
+ _rules_items_list = []
456
+ if _faiss_rules_index: _faiss_rules_index.reset()
457
+ logger.info("All rules cleared from backend and in-memory stores.")
458
+ except Exception as e:
459
+ logger.error(f"Error clearing all rules data: {e}")
460
+ success = False
461
+ return success
462
+
463
+ # Optional: Function to save FAISS indices to disk (from ai-learn, if needed for persistence between app runs with RAM backend)
464
+ FAISS_MEMORY_PATH = os.path.join(os.getenv("FAISS_STORAGE_PATH", "app_data/faiss_indices"), "memory_index.faiss")
465
+ FAISS_RULES_PATH = os.path.join(os.getenv("FAISS_STORAGE_PATH", "app_data/faiss_indices"), "rules_index.faiss")
466
+
467
+ def save_faiss_indices_to_disk():
468
+ if not _initialized or not faiss: return
469
+
470
+ faiss_dir = os.path.dirname(FAISS_MEMORY_PATH)
471
+ if not os.path.exists(faiss_dir): os.makedirs(faiss_dir, exist_ok=True)
472
 
473
+ if _faiss_memory_index and _faiss_memory_index.ntotal > 0:
474
  try:
475
+ faiss.write_index(_faiss_memory_index, FAISS_MEMORY_PATH)
476
+ logger.info(f"Memory FAISS index saved to disk ({_faiss_memory_index.ntotal} items).")
477
+ except Exception as e: logger.error(f"Error saving memory FAISS index: {e}")
478
+
479
+ if _faiss_rules_index and _faiss_rules_index.ntotal > 0:
480
+ try:
481
+ faiss.write_index(_faiss_rules_index, FAISS_RULES_PATH)
482
+ logger.info(f"Rules FAISS index saved to disk ({_faiss_rules_index.ntotal} items).")
483
+ except Exception as e: logger.error(f"Error saving rules FAISS index: {e}")
484
+
485
+ def load_faiss_indices_from_disk():
486
+ global _faiss_memory_index, _faiss_rules_index
487
+ if not _initialized or not faiss: return
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
488
 
489
+ if os.path.exists(FAISS_MEMORY_PATH) and _faiss_memory_index: # Check if index object exists
490
+ try:
491
+ logger.info(f"Loading memory FAISS index from {FAISS_MEMORY_PATH}...")
492
+ _faiss_memory_index = faiss.read_index(FAISS_MEMORY_PATH)
493
+ logger.info(f"Memory FAISS index loaded ({_faiss_memory_index.ntotal} items).")
494
+ # Consistency check: FAISS ntotal vs len(_memory_items_list)
495
+ if _faiss_memory_index.ntotal != len(_memory_items_list) and len(_memory_items_list) > 0:
496
+ logger.warning(f"Memory FAISS index count ({_faiss_memory_index.ntotal}) differs from loaded texts ({len(_memory_items_list)}). Consider rebuilding FAISS.")
497
+ except Exception as e: logger.error(f"Error loading memory FAISS index: {e}. Will use fresh index.")
498
+
499
+ if os.path.exists(FAISS_RULES_PATH) and _faiss_rules_index:
500
+ try:
501
+ logger.info(f"Loading rules FAISS index from {FAISS_RULES_PATH}...")
502
+ _faiss_rules_index = faiss.read_index(FAISS_RULES_PATH)
503
+ logger.info(f"Rules FAISS index loaded ({_faiss_rules_index.ntotal} items).")
504
+ if _faiss_rules_index.ntotal != len(_rules_items_list) and len(_rules_items_list) > 0:
505
+ logger.warning(f"Rules FAISS index count ({_faiss_rules_index.ntotal}) differs from loaded texts ({len(_rules_items_list)}). Consider rebuilding FAISS.")
506
+ except Exception as e: logger.error(f"Error loading rules FAISS index: {e}. Will use fresh index.")