File size: 19,471 Bytes
9bc382d
 
 
 
 
 
 
 
35151aa
 
9bc382d
35151aa
 
 
 
 
 
 
 
9bc382d
f86ad35
aec5733
f86ad35
 
 
35151aa
9bc382d
 
 
35151aa
 
155ac2a
9bc382d
81314aa
155ac2a
f86ad35
9bc382d
81314aa
35151aa
f86ad35
 
35151aa
 
 
 
 
9bc382d
35151aa
9bc382d
dc24da7
35151aa
dc24da7
9bc382d
ae3cd0d
 
9bc382d
ae3cd0d
9bc382d
dc24da7
 
ae3cd0d
 
9bc382d
ae3cd0d
dc24da7
 
0dd31f7
35151aa
9bc382d
35151aa
 
 
f86ad35
9bc382d
ae3cd0d
9bc382d
35151aa
 
 
 
 
 
 
 
 
 
 
 
 
 
f86ad35
9bc382d
 
 
ae3cd0d
35151aa
 
 
ae3cd0d
 
9bc382d
f86ad35
9bc382d
 
f86ad35
9bc382d
35151aa
 
9bc382d
 
 
 
 
f86ad35
35151aa
 
f86ad35
ae3cd0d
f86ad35
 
35151aa
 
9bc382d
 
35151aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9bc382d
35151aa
 
 
 
f86ad35
35151aa
 
 
 
 
 
 
 
f86ad35
35151aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9bc382d
35151aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae3cd0d
35151aa
 
f86ad35
35151aa
 
 
ae3cd0d
9bc382d
ae3cd0d
9bc382d
 
 
f86ad35
35151aa
 
9bc382d
 
ae3cd0d
35151aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9bc382d
 
 
 
35151aa
9bc382d
 
35151aa
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
import os
import io
import re
import logging
import subprocess
from datetime import datetime
import urllib.parse
import tempfile
import json # For streaming JSON messages
import time # For gevent.sleep

from flask import Flask, request, render_template, Response, stream_with_context
from werkzeug.utils import secure_filename

# Ensure gevent is imported and monkey patched if needed for other libraries
# that might not be gevent-friendly. For built-in libs and requests (with Gunicorn gevent worker),
# this is often handled by Gunicorn.
# from gevent import monkey
# monkey.patch_all() # Apply this early if you suspect issues with other libs

import requests
import pdfplumber
from pdf2image import convert_from_path, convert_from_bytes
import pytesseract
from PIL import Image
from huggingface_hub import HfApi, create_repo, HfHubHTTPError

# --- Flask App Initialization ---
app = Flask(__name__)
app.config['UPLOAD_FOLDER'] = tempfile.gettempdir()
app.config['MAX_CONTENT_LENGTH'] = 50 * 1024 * 1024  # 50 MB limit for uploads, adjust as needed

# --- Logging Configuration ---
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)

# --- Hugging Face Configuration ---
HF_TOKEN = os.getenv("HF_TOKEN")
HF_DATASET_REPO_NAME = os.getenv("HF_DATASET_REPO_NAME", "pdf-images-extracted")
hf_api = HfApi()

# --- Helper to yield messages for streaming ---
def yield_message(type, data):
    """Helper to format messages as JSON strings for streaming."""
    # Add a newline so client can easily split messages
    return json.dumps({"type": type, **data}) + "\n"

# --- PDF Processing Helper Functions (Adapted for Streaming) ---

def check_poppler():
    # (Same as before)
    try:
        result = subprocess.run(["pdftoppm", "-v"], capture_output=True, text=True, check=False)
        version_info_log = result.stderr.strip() if result.stderr else result.stdout.strip()
        if version_info_log:
            logger.info(f"Poppler version check: {version_info_log.splitlines()[0] if version_info_log else 'No version output'}")
        else:
            logger.info("Poppler 'pdftoppm -v' ran. Assuming Poppler is present.")
        return True
    except FileNotFoundError:
        logger.error("Poppler (pdftoppm command) not found. Ensure poppler-utils is installed and in PATH.")
        return False
    except Exception as e:
        logger.error(f"An unexpected error occurred during Poppler check: {str(e)}")
        return False

def ensure_hf_dataset():
    # (Same as before, but logs info useful for streaming if an error occurs)
    if not HF_TOKEN:
        msg = "HF_TOKEN is not set. Cannot ensure Hugging Face dataset. Image uploads will fail."
        logger.warning(msg)
        return "Error: " + msg
    try:
        repo_id_obj = create_repo(repo_id=HF_DATASET_REPO_NAME, token=HF_TOKEN, repo_type="dataset", exist_ok=True)
        logger.info(f"Dataset repo ensured: {repo_id_obj.repo_id}")
        return repo_id_obj.repo_id
    except HfHubHTTPError as e:
        if e.response.status_code == 409:
             logger.info(f"Dataset repo '{HF_DATASET_REPO_NAME}' already exists.")
             # Attempt to construct the full repo_id (namespace/repo_name)
             try:
                 user_info = hf_api.whoami(token=HF_TOKEN)
                 namespace = user_info.get('name') if user_info else None
                 if namespace:
                     return f"{namespace}/{HF_DATASET_REPO_NAME}"
             except Exception as whoami_e:
                 logger.error(f"Could not determine namespace for existing repo via whoami: {whoami_e}")
             return f"hf://datasets/{HF_DATASET_REPO_NAME}" # Fallback, might not be full id
        logger.error(f"Hugging Face dataset error (HTTP {e.response.status_code}): {str(e)}")
        return f"Error: Failed to access or create dataset '{HF_DATASET_REPO_NAME}': {str(e)}"
    except Exception as e:
        logger.error(f"Hugging Face dataset error: {str(e)}", exc_info=True)
        return f"Error: Failed to access or create dataset '{HF_DATASET_REPO_NAME}': {str(e)}"


def upload_image_to_hf_stream(image_pil, filename_base, page_num_for_log=""):
    # (Adapted to potentially yield status during this sub-process if it were longer)
    # For now, it's synchronous but part of the larger stream.
    repo_id_or_error = ensure_hf_dataset()
    if isinstance(repo_id_or_error, str) and repo_id_or_error.startswith("Error"):
        return repo_id_or_error

    repo_id = repo_id_or_error
    temp_image_path = None
    try:
        timestamp = datetime.now().strftime("%Y%m%d_%H%M%S_%f")
        repo_filename = f"images/{filename_base}_{page_num_for_log}_{timestamp}.png"
        
        with tempfile.NamedTemporaryFile(delete=False, suffix=".png", dir=app.config['UPLOAD_FOLDER']) as tmp_file:
            temp_image_path = tmp_file.name
        image_pil.save(temp_image_path, format="PNG")

        logger.info(f"Attempting to upload {temp_image_path} to {repo_id}/{repo_filename}")
        file_url = hf_api.upload_file(
            path_or_fileobj=temp_image_path, path_in_repo=repo_filename,
            repo_id=repo_id, repo_type="dataset", token=HF_TOKEN
        )
        logger.info(f"Successfully uploaded image: {file_url}")
        return file_url
    except Exception as e:
        logger.error(f"Image upload error for {filename_base}{page_num_for_log}: {str(e)}", exc_info=True)
        return f"Error uploading image {filename_base}{page_num_for_log}: {str(e)}"
    finally:
        if temp_image_path and os.path.exists(temp_image_path):
            try: os.remove(temp_image_path)
            except OSError as ose: logger.error(f"Error removing temp image file {temp_image_path}: {ose}")


def format_page_text_to_markdown_chunk(page_text_content):
    """Formats a single page's text content into a markdown chunk.
       More complex formatting logic can be applied here page by page.
    """
    chunk_md = ""
    # Normalize newlines: multiple consecutive newlines become a single blank line (two \n chars)
    page_text_content = re.sub(r'\n\s*\n+', '\n\n', page_text_content.strip())
    lines = page_text_content.split('\n') 
    is_in_list = False
    for line_text in lines:
        line_stripped = line_text.strip()
        if not line_stripped:
            chunk_md += "\n"
            is_in_list = False
            continue
        list_match = re.match(r'^\s*(?:(?:\d+\.)|[*+-])\s+(.*)', line_stripped)
        is_heading_candidate = line_stripped.isupper() and 5 < len(line_stripped) < 100
        if is_heading_candidate and not list_match:
            chunk_md += f"## {line_stripped}\n\n"
            is_in_list = False
        elif list_match:
            list_item_text = list_match.group(1)
            chunk_md += f"- {list_item_text}\n"
            is_in_list = True
        else:
            if is_in_list: chunk_md += "\n"
            chunk_md += f"{line_text}\n\n"
            is_in_list = False
    return re.sub(r'\n\s*\n+', '\n\n', chunk_md.strip()) + "\n\n"


# --- Main PDF Processing Logic (Generator Function for Streaming) ---

def generate_pdf_conversion_stream(pdf_input_source_path_or_url):
    """
    Processes the PDF incrementally and yields status messages and markdown content.
    `pdf_input_source_path_or_url` is a local file path or a URL string.
    """
    try:
        # Initial Markdown Title
        yield yield_message("markdown_replace", {"content": "# Extracted PDF Content\n\n"})
        time.sleep(0.01) # Give gevent a chance to yield

        # 1. Text and Table Extraction (Page by Page)
        yield yield_message("status", {"message": "Opening PDF for text extraction..."})
        time.sleep(0.01)

        source_is_url = isinstance(pdf_input_source_path_or_url, str) and \
                        pdf_input_source_path_or_url.startswith(('http://', 'https://'))
        
        pdf_handle_for_text = None
        pdf_bytes_for_images = None # Store bytes if downloaded from URL for image extraction

        if source_is_url:
            try:
                response = requests.get(pdf_input_source_path_or_url, stream=True, timeout=60) # Increased timeout
                response.raise_for_status()
                pdf_bytes_for_images = response.content # Read all content for pdf2image
                pdf_handle_for_text = io.BytesIO(pdf_bytes_for_images) # Use BytesIO for pdfplumber
                yield yield_message("status", {"message": f"PDF downloaded from URL ({len(pdf_bytes_for_images)/1024:.2f} KB)."})
                time.sleep(0.01)
            except requests.RequestException as e:
                logger.error(f"URL fetch error for PDF processing: {str(e)}", exc_info=True)
                yield yield_message("error", {"message": f"Error fetching PDF from URL: {str(e)}"})
                return # Stop generation
        else: # Local file path
             pdf_handle_for_text = pdf_input_source_path_or_url # pdfplumber takes path

        total_text_pages = 0
        try:
            with pdfplumber.open(pdf_handle_for_text) as pdf:
                total_text_pages = len(pdf.pages)
                yield yield_message("status", {"message": f"Found {total_text_pages} page(s) for text extraction."})
                time.sleep(0.01)

                for i, page in enumerate(pdf.pages):
                    yield yield_message("status", {"message": f"Extracting text from page {i+1}/{total_text_pages}..."})
                    time.sleep(0.01) # gevent yield
                    
                    page_text = page.extract_text(layout=True, x_density=1, y_density=1) or ""
                    
                    page_tables_md = ""
                    tables = page.extract_tables()
                    if tables:
                        for table_idx, table_data in enumerate(tables):
                            if table_data:
                                yield yield_message("status", {"message": f"  Processing table {table_idx+1} on page {i+1}..."})
                                header = [" | ".join(str(cell) if cell is not None else "" for cell in table_data[0])]
                                separator = [" | ".join(["---"] * len(table_data[0]))]
                                body = [" | ".join(str(cell) if cell is not None else "" for cell in row) for row in table_data[1:]]
                                table_md_lines = header + separator + body
                                page_tables_md += f"**Table (Page {i+1}):**\n" + "\n".join(table_md_lines) + "\n\n"
                    
                    formatted_page_text_md = format_page_text_to_markdown_chunk(page_text)
                    
                    yield yield_message("markdown_chunk", {"content": formatted_page_text_md})
                    if page_tables_md:
                        yield yield_message("markdown_chunk", {"content": page_tables_md})
                    time.sleep(0.01) # gevent yield
        except Exception as e:
            logger.error(f"Error during PDF text/table extraction: {str(e)}", exc_info=True)
            yield yield_message("error", {"message": f"Error during text extraction: {str(e)}"})
            # Continue to image extraction if possible, or return based on severity

        # 2. Image Extraction and OCR
        if not check_poppler():
            yield yield_message("error", {"message": "Poppler (for image extraction) not found or not working."})
        else:
            yield yield_message("status", {"message": "Starting image extraction..."})
            yield yield_message("markdown_chunk", {"content": "## Extracted Images\n\n"})
            if not HF_TOKEN:
                 yield yield_message("markdown_chunk", {"content": "**Note:** `HF_TOKEN` not set. Images will be described but not uploaded.\n\n"})

            time.sleep(0.01)
            extracted_pil_images = []
            try:
                if source_is_url and pdf_bytes_for_images:
                    # Use the already downloaded bytes
                    extracted_pil_images = convert_from_bytes(pdf_bytes_for_images, dpi=150) # Lower DPI for speed/memory
                elif not source_is_url: # local file path
                    extracted_pil_images = convert_from_path(pdf_input_source_path_or_url, dpi=150)
                
                yield yield_message("status", {"message": f"Found {len(extracted_pil_images)} image(s) in PDF (these are rasterized pages for now)."})
                time.sleep(0.01)

                # TODO: Implement more granular image extraction if pdf2image supports it,
                # or if you integrate a library that can extract embedded images directly.
                # For now, convert_from_path/bytes often gives full pages as images.

                for i, img_pil in enumerate(extracted_pil_images):
                    page_num_for_log = f"page_{i+1}" # Assuming one image per page from convert_from_path
                    yield yield_message("status", {"message": f"Processing image {i+1}/{len(extracted_pil_images)} (OCR & Upload)..."})
                    time.sleep(0.01)
                    
                    ocr_text = ""
                    try:
                        ocr_text = pytesseract.image_to_string(img_pil).strip()
                        if ocr_text:
                            yield yield_message("status", {"message": f"  OCR successful for image {i+1}."})
                    except Exception as ocr_e:
                        logger.error(f"OCR error for image {i+1}: {str(ocr_e)}")
                        ocr_text = f"OCR failed: {str(ocr_e)}"
                    
                    image_md_chunk = ""
                    if HF_TOKEN:
                        image_url_or_error = upload_image_to_hf_stream(img_pil, "pdf_image", page_num_for_log)
                        if isinstance(image_url_or_error, str) and not image_url_or_error.startswith("Error"):
                            image_md_chunk += f"![Image {i+1}]({image_url_or_error})\n"
                            yield yield_message("status", {"message": f"  Image {i+1} uploaded."})
                        else:
                            image_md_chunk += f"**Image {i+1} (Upload Error):** {str(image_url_or_error)}\n\n"
                            yield yield_message("error", {"message": f"Failed to upload image {i+1}: {str(image_url_or_error)}"})
                    else:
                        image_md_chunk += f"**Image {i+1} (not uploaded due to missing HF_TOKEN)**\n"

                    if ocr_text:
                        image_md_chunk += f"**Image {i+1} OCR Text:**\n```\n{ocr_text}\n```\n\n"
                    
                    yield yield_message("image_md", {"content": image_md_chunk})
                    time.sleep(0.01) # gevent yield

            except Exception as e:
                logger.error(f"Error during image extraction/processing: {str(e)}", exc_info=True)
                yield yield_message("error", {"message": f"Error during image extraction: {str(e)}"})
        
        yield yield_message("final_status", {"message": "All processing stages complete."})

    except Exception as e:
        logger.error(f"Unhandled error in PDF conversion stream: {str(e)}", exc_info=True)
        yield yield_message("error", {"message": f"Critical processing error: {str(e)}"})


# --- Flask Routes ---

@app.route('/', methods=['GET'])
def index():
    return render_template('index.html')

@app.route('/process-stream', methods=['POST'])
def process_pdf_stream():
    pdf_file = request.files.get('pdf_file')
    pdf_url = request.form.get('pdf_url', '').strip()
    
    temp_pdf_path = None # To store path of uploaded file for cleanup
    pdf_input_source_for_generator = None

    def stream_processor():
        nonlocal temp_pdf_path # Make it accessible in this inner function for cleanup
        nonlocal pdf_input_source_for_generator

        try:
            if pdf_file and pdf_file.filename:
                if not pdf_file.filename.lower().endswith('.pdf'):
                    yield yield_message("error", {"message": "Uploaded file is not a PDF."})
                    return
                
                filename = secure_filename(pdf_file.filename)
                # Save to a temporary file (ensure UPLOAD_FOLDER is writable by app user)
                os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True)
                fd, temp_pdf_path = tempfile.mkstemp(suffix=".pdf", prefix="upload_", dir=app.config['UPLOAD_FOLDER'])
                os.close(fd) 
                pdf_file.save(temp_pdf_path)
                logger.info(f"Uploaded PDF saved to temporary path: {temp_pdf_path}")
                pdf_input_source_for_generator = temp_pdf_path
                yield yield_message("status", {"message": f"Processing uploaded PDF: {filename}"})
                time.sleep(0.01)

            elif pdf_url:
                unquoted_url = urllib.parse.unquote(pdf_url)
                if not (unquoted_url.startswith('http://') or unquoted_url.startswith('https://')):
                    yield yield_message("error", {"message": "Invalid URL scheme. Must be http or https."})
                    return
                # Consider a light check for .pdf extension, but content-type is more reliable
                
                pdf_input_source_for_generator = unquoted_url
                yield yield_message("status", {"message": f"Preparing to process PDF from URL: {unquoted_url}"})
                time.sleep(0.01)
            else:
                yield yield_message("error", {"message": "No PDF file uploaded and no PDF URL provided."})
                return

            # Yield from the main generator
            for message_part in generate_pdf_conversion_stream(pdf_input_source_for_generator):
                yield message_part
                # time.sleep(0.01) # Allow gevent to switch context, important for streaming

        except Exception as e:
            logger.error(f"Error setting up stream or in initial validation: {str(e)}", exc_info=True)
            yield yield_message("error", {"message": f"Setup error: {str(e)}"})
        finally:
            if temp_pdf_path and os.path.exists(temp_pdf_path):
                try:
                    os.remove(temp_pdf_path)
                    logger.info(f"Cleaned up temporary PDF: {temp_pdf_path}")
                    yield yield_message("status", {"message": f"Cleaned up temporary file."})
                except OSError as ose:
                    logger.error(f"Error removing temporary PDF {temp_pdf_path}: {ose}")
                    yield yield_message("error", {"message": f"Could not clean temp file: {ose}"})
    
    # Using stream_with_context for proper handling of request context within the generator
    return Response(stream_with_context(stream_processor()), mimetype='application/x-ndjson')


# --- Main Execution ---
if __name__ == '__main__':
    if not check_poppler(): # Check Poppler at startup for local dev
        logger.warning("Poppler utilities might not be installed correctly. PDF processing might fail.")
    os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True)
    # For local dev, Flask's built-in server is fine. Gunicorn handles production.
    # The 'threaded=True' or using gevent server locally can also help test streaming.
    app.run(host='0.0.0.0', port=int(os.getenv("PORT", 7860)), debug=True, threaded=True)