Spaces:
Running
Running
File size: 13,583 Bytes
2870322 f966038 5f00446 5d92716 f966038 b1a1b26 d7970b7 f43722b f966038 5d92716 b1a1b26 2870322 b1a1b26 d4d895f 2870322 b1a1b26 2870322 d7970b7 f966038 b1a1b26 d6afb4c 5d92716 f966038 b1a1b26 bf136f8 b1a1b26 bf136f8 b1a1b26 5d92716 b1a1b26 5d92716 b1a1b26 d4d895f b1a1b26 d4d895f 2870322 d4d895f b1a1b26 f966038 d4d895f 2870322 b1a1b26 d4d895f 2870322 b1a1b26 d4d895f b1a1b26 2870322 b1a1b26 2870322 d4d895f 2870322 d4d895f 2870322 b1a1b26 f43722b b1a1b26 bf136f8 b1a1b26 d4d895f b1a1b26 bf136f8 d4d895f 2870322 b1a1b26 bf136f8 2870322 b1a1b26 bf136f8 d4d895f b1a1b26 d4d895f b1a1b26 d6afb4c b1a1b26 d4d895f b1a1b26 d4d895f b1a1b26 d6afb4c b1a1b26 d4d895f b1a1b26 d4d895f b1a1b26 bf136f8 5d92716 d4d895f 5d92716 d4d895f 5d92716 d6afb4c 5d92716 b1a1b26 d4d895f b1a1b26 d4d895f b1a1b26 bf136f8 b1a1b26 d4d895f b1a1b26 d4d895f b1a1b26 d4d895f b1a1b26 d4d895f b1a1b26 d4d895f b1a1b26 d4d895f b1a1b26 f43722b f966038 b1a1b26 2870322 d4d895f 2870322 f43722b d4d895f b1a1b26 d4d895f b1a1b26 d4d895f b1a1b26 d4d895f 2870322 d4d895f f43722b 5d92716 b1a1b26 d4d895f 5d92716 d4d895f b1a1b26 f966038 b1a1b26 f43722b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
# Save this file as app.py in the root of the cloned Surya repository
import gradio as gr
import torch
from huggingface_hub import snapshot_download
import yaml
import numpy as np
from PIL import Image
import sunpy.map
import sunpy.net.attrs as a
from sunpy.net import Fido
from astropy.wcs import WCS
import astropy.units as u
from reproject import reproject_interp
import os
import warnings
import logging
import datetime
import matplotlib.pyplot as plt
import sunpy.visualization.colormaps as sunpy_cm
import traceback
# --- Use the official Surya modules ---
from surya.models.helio_spectformer import HelioSpectFormer
from surya.utils.data import build_scalers
from surya.datasets.helio import inverse_transform_single_channel
# --- Configuration ---
warnings.filterwarnings("ignore", category=UserWarning, module='sunpy')
warnings.filterwarnings("ignore", category=FutureWarning)
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Global cache for model, config, etc.
APP_CACHE = {}
SDO_CHANNELS_MAP = {
"aia94": (a.Wavelength(94 * u.angstrom), a.Sample(12 * u.s)),
"aia131": (a.Wavelength(131 * u.angstrom), a.Sample(12 * u.s)),
"aia171": (a.Wavelength(171 * u.angstrom), a.Sample(12 * u.s)),
"aia193": (a.Wavelength(193 * u.angstrom), a.Sample(12 * u.s)),
"aia211": (a.Wavelength(211 * u.angstrom), a.Sample(12 * u.s)),
"aia304": (a.Wavelength(304 * u.angstrom), a.Sample(12 * u.s)),
"aia335": (a.Wavelength(335 * u.angstrom), a.Sample(12 * u.s)),
"aia1600": (a.Wavelength(1600 * u.angstrom), a.Sample(24 * u.s)),
"hmi_m": (a.Physobs("intensity"), a.Sample(45 * u.s)),
"hmi_bx": (a.Physobs("los_magnetic_field"), a.Sample(720 * u.s)),
"hmi_by": (a.Physobs("los_magnetic_field"), a.Sample(720 * u.s)), # Placeholder
"hmi_bz": (a.Physobs("los_magnetic_field"), a.Sample(720 * u.s)), # Placeholder
"hmi_v": (a.Physobs("los_velocity"), a.Sample(45 * u.s)),
}
SDO_CHANNELS = list(SDO_CHANNELS_MAP.keys())
# --- 1. Model Loading and Setup ---
def setup_and_load_model():
if "model" in APP_CACHE:
yield "Model already loaded. Skipping setup."
return
yield "Downloading model files (first run only)..."
snapshot_download(repo_id="nasa-ibm-ai4science/Surya-1.0", local_dir="data/Surya-1.0",
allow_patterns=["config.yaml", "scalers.yaml", "surya.366m.v1.pt"])
yield "Loading configuration and data scalers..."
with open("data/Surya-1.0/config.yaml") as fp:
config = yaml.safe_load(fp)
APP_CACHE["config"] = config
scalers_info = yaml.safe_load(open("data/Surya-1.0/scalers.yaml", "r"))
APP_CACHE["scalers"] = build_scalers(info=scalers_info)
yield "Initializing model architecture..."
model_config = config["model"]
model = HelioSpectFormer(
img_size=model_config["img_size"], patch_size=model_config["patch_size"],
in_chans=len(config["data"]["sdo_channels"]), embed_dim=model_config["embed_dim"],
time_embedding={"type": "linear", "time_dim": len(config["data"]["time_delta_input_minutes"])},
depth=model_config["depth"], n_spectral_blocks=model_config["n_spectral_blocks"],
num_heads=model_config["num_heads"], mlp_ratio=model_config["mlp_ratio"],
drop_rate=model_config["drop_rate"], dtype=torch.bfloat16,
window_size=model_config["window_size"], dp_rank=model_config["dp_rank"],
learned_flow=model_config["learned_flow"], use_latitude_in_learned_flow=model_config["learned_flow"],
init_weights=False, checkpoint_layers=list(range(model_config["depth"])),
rpe=model_config["rpe"], ensemble=model_config["ensemble"], finetune=model_config["finetune"],
)
device = "cuda" if torch.cuda.is_available() else "cpu"
APP_CACHE["device"] = device
yield f"Loading model weights to {device}..."
weights = torch.load(f"data/Surya-1.0/surya.366m.v1.pt", map_location=torch.device(device))
model.load_state_dict(weights, strict=True)
model.to(device)
model.eval()
APP_CACHE["model"] = model
yield "โ
Model setup complete."
# --- 2. Live Data Fetching and Preprocessing (as a generator) ---
def fetch_and_process_sdo_data(target_dt):
config = APP_CACHE["config"]
img_size = config["model"]["img_size"][0]
input_deltas = config["data"]["time_delta_input_minutes"]
target_delta = config["data"]["time_delta_target_minutes"][0]
input_times = [target_dt + datetime.timedelta(minutes=m) for m in input_deltas]
target_time = target_dt + datetime.timedelta(minutes=target_delta)
all_times = sorted(list(set(input_times + [target_time])))
data_maps = {}
total_downloads = len(all_times) * len(SDO_CHANNELS)
downloads_done = 0
yield f"Starting download of {total_downloads} data files..."
for t in all_times:
data_maps[t] = {}
for i, (channel, (physobs, sample)) in enumerate(SDO_CHANNELS_MAP.items()):
downloads_done += 1
yield f"Downloading [{downloads_done}/{total_downloads}]: {channel} for {t.strftime('%Y-%m-%d %H:%M')}..."
if channel in ["hmi_by", "hmi_bz"]:
if data_maps[t].get("hmi_bx"): data_maps[t][channel] = data_maps[t]["hmi_bx"]
continue
time_attr = a.Time(t - datetime.timedelta(minutes=10), t + datetime.timedelta(minutes=10))
instrument = a.Instrument.hmi if "hmi" in channel else a.Instrument.aia
query = Fido.search(time_attr, instrument, physobs, sample)
if not query: raise ValueError(f"No data found for {channel} at {t}")
files = Fido.fetch(query[0, 0], path="./data/sdo_cache")
data_maps[t][channel] = sunpy.map.Map(files[0])
yield "โ
All files downloaded. Starting preprocessing..."
output_wcs = WCS(naxis=2)
output_wcs.wcs.crpix = [(img_size + 1) / 2, (img_size + 1) / 2]
output_wcs.wcs.cdelt = np.array([-1.2, 1.2]) * u.arcsec
output_wcs.wcs.crval = [0, 0] * u.arcsec
output_wcs.wcs.ctype = ['HPLN-TAN', 'HPLT-TAN']
scaler = APP_CACHE["scalers"]
processed_tensors = {}
for t, channel_maps in data_maps.items():
channel_tensors = []
for i, channel in enumerate(SDO_CHANNELS):
smap = channel_maps[channel]
reprojected_data, _ = reproject_interp(smap, output_wcs, shape_out=(img_size, img_size))
exp_time = smap.meta.get('exptime', 1.0)
if exp_time is None or exp_time <= 0: exp_time = 1.0
norm_data = reprojected_data / exp_time
scaled_data = scaler.transform(norm_data, c_idx=i)
channel_tensors.append(torch.from_numpy(scaled_data.astype(np.float32)))
processed_tensors[t] = torch.stack(channel_tensors)
yield "โ
Preprocessing complete."
input_tensor_list = [processed_tensors[t] for t in input_times]
input_tensor = torch.stack(input_tensor_list, dim=1).unsqueeze(0)
target_map = data_maps[target_time]
last_input_map = data_maps[input_times[-1]]
# The final yield of a generator is its return value
yield (input_tensor, last_input_map, target_map)
# --- 3. Inference and Visualization ---
# (These are fast and don't need to be generators)
def run_inference(input_tensor):
model = APP_CACHE["model"]
device = APP_CACHE["device"]
time_deltas = APP_CACHE["config"]["data"]["time_delta_input_minutes"]
time_delta_tensor = torch.tensor(time_deltas, dtype=torch.float32).unsqueeze(0).to(device)
input_batch = {"ts": input_tensor.to(device), "time_delta_input": time_delta_tensor}
with torch.no_grad():
with torch.autocast(device_type=device.split(':')[0], dtype=torch.bfloat16):
prediction = model(input_batch)
return prediction.cpu()
def generate_visualization(last_input_map, prediction_tensor, target_map, channel_name):
if last_input_map is None: return None, None, None
c_idx = SDO_CHANNELS.index(channel_name)
scaler = APP_CACHE["scalers"]
all_means, all_stds, all_epsilons, all_sl_scale_factors = scaler.get_params()
mean, std, epsilon, sl_scale_factor = all_means[c_idx], all_stds[c_idx], all_epsilons[c_idx], all_sl_scale_factors[c_idx]
pred_slice = inverse_transform_single_channel(
prediction_tensor[0, c_idx].numpy(), mean=mean, std=std, epsilon=epsilon, sl_scale_factor=sl_scale_factor
)
vmax = np.quantile(np.nan_to_num(target_map[channel_name].data), 0.995)
cmap_name = f"sdoaia{channel_name.replace('aia', '')}" if 'aia' in channel_name else 'hmimag'
cmap = plt.get_cmap(sunpy_cm.cmlist.get(cmap_name, 'gray'))
def to_pil(data, flip=False):
data_clipped = np.nan_to_num(data)
data_clipped = np.clip(data_clipped, 0, vmax)
data_norm = data_clipped / vmax if vmax > 0 else data_clipped
colored = (cmap(data_norm)[:, :, :3] * 255).astype(np.uint8)
img = Image.fromarray(colored)
return img.transpose(Image.Transpose.FLIP_TOP_BOTTOM) if flip else img
return to_pil(last_input_map[channel_name].data, flip=True), to_pil(pred_slice, flip=True), to_pil(target_map[channel_name].data, flip=True)
# --- 4. Gradio UI and Controllers ---
def forecast_controller(dt_str):
# This is now a generator function that yields updates to the UI
# Initial UI state: disable inputs, clear old results
yield {
log_box: gr.update(value="Starting forecast...", visible=True),
run_button: gr.update(interactive=False),
datetime_input: gr.update(interactive=False),
results_group: gr.update(visible=False)
}
try:
if not dt_str: raise gr.Error("Please select a date and time.")
# --- Stage 1: Setup Model ---
# The setup function is also a generator, so we loop through its yields
for status in setup_and_load_model():
yield { log_box: status }
target_dt = datetime.datetime.fromisoformat(dt_str)
# --- Stage 2: Fetch and Process Data ---
# We loop through the yields from the data pipeline
data_pipeline = fetch_and_process_sdo_data(target_dt)
while True:
try:
# Get the next status update
status = next(data_pipeline)
# If it's a tuple, it's the final return value
if isinstance(status, tuple):
input_tensor, last_input_map, target_map = status
break
# Otherwise, it's a string update
yield { log_box: status }
except StopIteration:
raise gr.Error("Data processing pipeline finished unexpectedly.")
# --- Stage 3: Run Inference ---
yield { log_box: "Running AI model inference..." }
prediction_tensor = run_inference(input_tensor)
# --- Stage 4: Generate Visualization ---
yield { log_box: "Generating final visualizations..." }
img_in, img_pred, img_target = generate_visualization(last_input_map, prediction_tensor, target_map, "aia171")
yield {
log_box: f"โ
Forecast complete for {target_dt.isoformat()}.",
results_group: gr.update(visible=True),
# Pass final data to state objects
state_last_input: last_input_map,
state_prediction: prediction_tensor,
state_target: target_map,
# Display final images
input_display: img_in,
prediction_display: img_pred,
target_display: img_target,
}
except Exception as e:
error_str = traceback.format_exc()
logger.error(f"An error occurred: {e}\n{error_str}")
yield { log_box: f"โ ERROR: {e}\n\nTraceback:\n{error_str}" }
finally:
# Final UI state: re-enable inputs
yield {
run_button: gr.update(interactive=True),
datetime_input: gr.update(interactive=True)
}
with gr.Blocks(theme=gr.themes.Soft()) as demo:
state_last_input = gr.State()
state_prediction = gr.State()
state_target = gr.State()
gr.Markdown(...) # UI definition is the same
with gr.Row():
datetime_input = gr.Textbox(...)
run_button = gr.Button("๐ฎ Generate Forecast", variant="primary")
# NEW: A dedicated box for logs and feedback
log_box = gr.Textbox(label="Log", interactive=False, visible=False, lines=5)
with gr.Group(visible=False) as results_group:
channel_selector = gr.Dropdown(...)
with gr.Row():
input_display = gr.Image(...)
prediction_display = gr.Image(...)
target_display = gr.Image(...)
# The .click() event is now pointed to our generator function
# It updates multiple components based on what the generator yields
run_button.click(
fn=forecast_controller,
inputs=[datetime_input],
outputs=[
log_box, run_button, datetime_input, results_group,
state_last_input, state_prediction, state_target,
input_display, prediction_display, target_display
]
)
channel_selector.change(
fn=generate_visualization, # This is a fast function, no generator needed
inputs=[state_last_input, state_prediction, state_target, channel_selector],
outputs=[input_display, prediction_display, target_display]
)
if __name__ == "__main__":
os.makedirs("./data/sdo_cache", exist_ok=True)
demo.launch(debug=True) |