Spaces:
Running
Running
File size: 14,458 Bytes
f966038 5f00446 5d92716 f966038 4ac0d86 f43722b f966038 5d92716 b1a1b26 2870322 0f33a84 d4d895f 4ac0d86 1dc86bc 2870322 03610d5 d7970b7 f966038 d6afb4c 5d92716 f966038 b1a1b26 bf136f8 0f33a84 5d92716 0f33a84 5d92716 d4d895f b1a1b26 d4d895f 2870322 d4d895f b1a1b26 f966038 d4d895f 2870322 03610d5 b1a1b26 d4d895f 2870322 9f9c5a3 b1a1b26 d4d895f b1a1b26 2870322 b1a1b26 2870322 d4d895f 2870322 0f33a84 9013587 2870322 ca059e5 f43722b b1a1b26 4ac0d86 b1a1b26 0f33a84 4ac0d86 0f33a84 4ac0d86 b1a1b26 0f33a84 4ac0d86 0f33a84 1dc86bc 0f33a84 9013587 0f33a84 03610d5 b1a1b26 0f33a84 b1a1b26 0f33a84 b1a1b26 0f33a84 b1a1b26 03610d5 b1a1b26 d4d895f b1a1b26 d6afb4c 0f33a84 b1a1b26 0f33a84 d4d895f b1a1b26 9f9c5a3 e16d9dd b1a1b26 9f9c5a3 4ac0d86 0f33a84 b02989a 0f33a84 03610d5 e16d9dd 0f33a84 9f9c5a3 4ac0d86 9f9c5a3 4ac0d86 0f33a84 b1a1b26 9013587 d4d895f 9013587 d4d895f b1a1b26 9013587 b1a1b26 d4d895f 9013587 d4d895f b1a1b26 d4d895f b1a1b26 d4d895f b1a1b26 d4d895f 9013587 d4d895f 9f9c5a3 d4d895f b1a1b26 9f9c5a3 d4d895f 9013587 d4d895f b1a1b26 f966038 9f9c5a3 2870322 9f9c5a3 0f33a84 a2ea901 4ac0d86 0f33a84 9f9c5a3 2870322 9013587 4ac0d86 9013587 4ac0d86 9013587 e1181ea 9013587 4ac0d86 9f9c5a3 d4d895f b1a1b26 9013587 9f9c5a3 b1a1b26 9f9c5a3 2870322 f43722b 5d92716 9013587 d4d895f 9013587 d4d895f 5d92716 9f9c5a3 f966038 f43722b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 |
import gradio as gr
import torch
from huggingface_hub import snapshot_download
import yaml
import numpy as np
from PIL import Image
import requests
import os
import warnings
import logging
import datetime
import matplotlib.pyplot as plt
import sunpy.visualization.colormaps as sunpy_cm
import traceback
from io import BytesIO
import re
from surya.models.helio_spectformer import HelioSpectFormer
from surya.utils.data import build_scalers
from surya.datasets.helio import inverse_transform_single_channel
warnings.filterwarnings("ignore", category=UserWarning, module='sunpy')
warnings.filterwarnings("ignore", category=FutureWarning)
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
APP_CACHE = {}
CHANNEL_TO_URL_CODE = {
"aia94": "0094", "aia131": "0131", "aia171": "0171", "aia193": "0193",
"aia211": "0211", "aia304": "0304", "aia335": "0335", "aia1600": "1600",
"hmi_m": "HMIBC", "hmi_bx": "HMIB", "hmi_by": "HMIB",
"hmi_bz": "HMIB", "hmi_v": "HMID"
}
SDO_CHANNELS = list(CHANNEL_TO_URL_CODE.keys())
def setup_and_load_model():
if "model" in APP_CACHE:
yield "Model already loaded. Skipping setup."
return
yield "Downloading model files (first run only)..."
snapshot_download(repo_id="nasa-ibm-ai4science/Surya-1.0", local_dir="data/Surya-1.0",
allow_patterns=["config.yaml", "scalers.yaml", "surya.366m.v1.pt"])
yield "Loading configuration and data scalers..."
with open("data/Surya-1.0/config.yaml") as fp:
config = yaml.safe_load(fp)
APP_CACHE["config"] = config
scalers_info = yaml.safe_load(open("data/Surya-1.0/scalers.yaml", "r"))
APP_CACHE["scalers"] = build_scalers(info=scalers_info)
yield "Initializing model architecture..."
model_config = config["model"]
model = HelioSpectFormer(
img_size=model_config["img_size"], patch_size=model_config["patch_size"],
in_chans=len(config["data"]["sdo_channels"]), embed_dim=model_config["embed_dim"],
time_embedding={"type": "linear", "time_dim": len(config["data"]["time_delta_input_minutes"])},
depth=model_config["depth"], n_spectral_blocks=model_config["n_spectral_blocks"],
num_heads=model_config["num_heads"], mlp_ratio=model_config["mlp_ratio"],
drop_rate=model_config["drop_rate"], dtype=torch.bfloat16,
window_size=model_config["window_size"], dp_rank=model_config["dp_rank"],
learned_flow=model_config["learned_flow"], use_latitude_in_learned_flow=model_config["learned_flow"],
init_weights=False, checkpoint_layers=list(range(model_config["depth"])),
rpe=model_config["rpe"], ensemble=model_config["ensemble"], finetune=model_config["finetune"],
)
device = "cuda" if torch.cuda.is_available() else "cpu"
APP_CACHE["device"] = device
yield f"Loading model weights to {device}..."
weights = torch.load(f"data/Surya-1.0/surya.366m.v1.pt", map_location=torch.device(device))
model.load_state_dict(weights, strict=True)
model.to(device)
model.eval()
APP_CACHE["model"] = model
yield "โ
Model setup complete."
def find_nearest_browse_image_url(channel, target_dt):
url_code = CHANNEL_TO_URL_CODE[channel]
base_url = "https://sdo.gsfc.nasa.gov/assets/img/browse"
for i in range(2):
dt_to_try = target_dt - datetime.timedelta(days=i)
dir_url = dt_to_try.strftime(f"{base_url}/%Y/%m/%d/")
response = requests.get(dir_url)
if response.status_code != 200:
continue
filenames = re.findall(r'href="(\d{8}_\d{6}_4096_' + url_code + r'\.jpg)"', response.text)
if not filenames:
continue
best_filename = ""
min_diff = float('inf')
for fname in filenames:
try:
timestamp_str = fname.split('_')[1]
img_dt = datetime.datetime.strptime(f"{dt_to_try.strftime('%Y%m%d')}{timestamp_str}", "%Y%m%d%H%M%S")
diff = abs((target_dt - img_dt).total_seconds())
if diff < min_diff:
min_diff = diff
best_filename = fname
except (ValueError, IndexError):
continue
if best_filename:
return dir_url + best_filename
raise FileNotFoundError(f"Could not find any browse images for {channel} in the last 48 hours.")
def fetch_and_process_sdo_data(target_dt, forecast_horizon_minutes):
config = APP_CACHE["config"]
img_size = config["model"]["img_size"]
input_deltas = config["data"]["time_delta_input_minutes"]
input_times = [target_dt + datetime.timedelta(minutes=m) for m in input_deltas]
target_time = target_dt + datetime.timedelta(minutes=forecast_horizon_minutes)
all_times = sorted(list(set(input_times + [target_time])))
images = {}
total_fetches = len(all_times) * len(SDO_CHANNELS)
fetches_done = 0
yield f"Starting search for {total_fetches} data files..."
for t in all_times:
images[t] = {}
for channel in SDO_CHANNELS:
fetches_done += 1
yield f"Finding [{fetches_done}/{total_fetches}]: Closest image for {channel} near {t.strftime('%Y-%m-%d %H:%M')}..."
image_url = find_nearest_browse_image_url(channel, t)
yield f"Downloading: {os.path.basename(image_url)}..."
response = requests.get(image_url)
response.raise_for_status()
images[t][channel] = Image.open(BytesIO(response.content))
yield "โ
All images found and downloaded. Starting preprocessing..."
scalers_dict = APP_CACHE["scalers"]
processed_tensors = {}
for t, channel_images in images.items():
channel_tensors = []
for i, channel in enumerate(SDO_CHANNELS):
img = channel_images[channel]
if img.mode != 'L':
img = img.convert('L')
img_resized = img.resize((img_size, img_size), Image.Resampling.LANCZOS)
norm_data = np.array(img_resized, dtype=np.float32)
scaler = scalers_dict[channel]
scaled_data = scaler.transform(norm_data.reshape(-1, 1)).reshape(norm_data.shape)
channel_tensors.append(torch.from_numpy(scaled_data.astype(np.float32)))
processed_tensors[t] = torch.stack(channel_tensors)
yield "โ
Preprocessing complete."
input_tensor_list = [processed_tensors[t] for t in input_times]
input_tensor = torch.stack(input_tensor_list, dim=1).unsqueeze(0)
target_image_map = images[target_time]
last_input_image_map = images[input_times[-1]]
yield (input_tensor, last_input_image_map, target_image_map)
def run_inference(input_tensor):
model = APP_CACHE["model"]
device = APP_CACHE["device"]
time_deltas = APP_CACHE["config"]["data"]["time_delta_input_minutes"]
time_delta_tensor = torch.tensor(time_deltas, dtype=torch.float32).unsqueeze(0).to(device)
input_batch = {"ts": input_tensor.to(device), "time_delta_input": time_delta_tensor}
with torch.no_grad():
with torch.autocast(device_type=device.split(':')[0], dtype=torch.bfloat16):
prediction = model(input_batch)
return prediction.cpu().to(torch.float32)
def generate_visualization(last_input_map, prediction_tensor, target_map, channel_name):
if last_input_map is None: return None, None, None
c_idx = SDO_CHANNELS.index(channel_name)
# *** FIX: Access the specific scaler for the channel from the dictionary ***
scaler = APP_CACHE["scalers"][channel_name]
# *** FIX: Access the parameters as attributes, not from to_dict() ***
mean = scaler.mean
std = scaler.std
epsilon = scaler.epsilon
sl_scale_factor = scaler.sl_scale_factor
pred_slice = inverse_transform_single_channel(
prediction_tensor[0, c_idx].numpy(), mean=mean, std=std, epsilon=epsilon, sl_scale_factor=sl_scale_factor
)
target_img_data = np.array(target_map[channel_name])
vmax = np.quantile(np.nan_to_num(target_img_data), 0.995)
cmap_name = f"sdoaia{channel_name.replace('aia', '')}" if 'aia' in channel_name else 'hmimag'
cmap = plt.get_cmap(sunpy_cm.cmlist.get(cmap_name, 'gray'))
def to_pil(data):
data_clipped = np.nan_to_num(data)
data_clipped = np.clip(data_clipped, 0, vmax)
data_norm = data_clipped / vmax if vmax > 0 else data_clipped
colored = (cmap(data_norm)[:, :, :3] * 255).astype(np.uint8)
return Image.fromarray(colored)
return last_input_map[channel_name], to_pil(pred_slice), target_map[channel_name]
def forecast_controller(date_str, hour, minute, forecast_horizon):
yield {
log_box: gr.update(value="Starting forecast...", visible=True),
run_button: gr.update(interactive=False),
date_input: gr.update(interactive=False),
hour_slider: gr.update(interactive=False),
minute_slider: gr.update(interactive=False),
horizon_slider: gr.update(interactive=False),
results_group: gr.update(visible=False)
}
try:
if not date_str: raise gr.Error("Please select a date.")
for status in setup_and_load_model():
yield { log_box: status }
target_dt = datetime.datetime.fromisoformat(f"{date_str}T{int(hour):02d}:{int(minute):02d}:00")
data_pipeline = fetch_and_process_sdo_data(target_dt, forecast_horizon)
while True:
try:
status = next(data_pipeline)
if isinstance(status, tuple):
input_tensor, last_input_map, target_map = status
break
yield { log_box: status }
except StopIteration:
raise gr.Error("Data processing pipeline finished unexpectedly.")
yield { log_box: "Running AI model inference..." }
prediction_tensor = run_inference(input_tensor)
yield { log_box: "Generating final visualizations..." }
img_in, img_pred, img_target = generate_visualization(last_input_map, prediction_tensor, target_map, "aia171")
yield {
log_box: f"โ
Forecast complete for {target_dt.isoformat()} (+{forecast_horizon} mins).",
results_group: gr.update(visible=True),
state_last_input: last_input_map,
state_prediction: prediction_tensor,
state_target: target_map,
input_display: img_in,
prediction_display: img_pred,
target_display: img_target,
}
except Exception as e:
error_str = traceback.format_exc()
logger.error(f"An error occurred: {e}\n{error_str}")
yield { log_box: f"โ ERROR: {e}\n\nTraceback:\n{error_str}" }
finally:
yield {
run_button: gr.update(interactive=True),
date_input: gr.update(interactive=True),
hour_slider: gr.update(interactive=True),
minute_slider: gr.update(interactive=True),
horizon_slider: gr.update(interactive=True),
}
with gr.Blocks(theme=gr.themes.Soft()) as demo:
state_last_input = gr.State()
state_prediction = gr.State()
state_target = gr.State()
gr.Markdown(
"""
# โ๏ธ Surya: Live Forecast Demo โ๏ธ
### A Foundation Model for Solar Dynamics
This demo runs NASA's **Surya**, a foundation model trained to understand the physics of the Sun.
It looks at the Sun in 13 different channels (wavelengths of light) simultaneously to learn the complex relationships between phenomena like coronal loops, magnetic fields, and solar flares. By seeing these interconnected views, it can generate a holistic forecast of what the entire solar disk will look like in the near future.
<br>
<p style="color:red;font-weight:bold;">NOTE: This demo uses lower-quality browse images for reliability. The model was trained on high-fidelity scientific data, so forecast accuracy may vary.</p>
"""
)
with gr.Accordion("Step 1: Configure Forecast", open=True):
with gr.Row():
date_input = gr.Textbox(
label="Date (YYYY-MM-DD)",
value=(datetime.datetime.now(datetime.timezone.utc) - datetime.timedelta(hours=3)).strftime("%Y-%m-%d")
)
hour_slider = gr.Slider(label="Hour (UTC)", minimum=0, maximum=23, step=1, value=(datetime.datetime.now(datetime.timezone.utc) - datetime.timedelta(hours=3)).hour)
minute_slider = gr.Slider(label="Minute (UTC)", minimum=0, maximum=59, step=1, value=(datetime.datetime.now(datetime.timezone.utc) - datetime.timedelta(hours=3)).minute)
horizon_slider = gr.Slider(
label="Forecast Horizon (minutes ahead)",
minimum=12, maximum=120, step=12, value=12
)
run_button = gr.Button("๐ฎ Generate Forecast", variant="primary")
with gr.Accordion("Step 2: View Log", open=False):
log_box = gr.Textbox(label="Log", interactive=False, visible=False, lines=5, max_lines=10)
with gr.Group(visible=False) as results_group:
gr.Markdown("### Step 3: Explore Results")
channel_selector = gr.Dropdown(
choices=SDO_CHANNELS, value="aia171", label="๐ฐ๏ธ Select SDO Channel to Visualize"
)
with gr.Row():
input_display = gr.Image(label="Last Input to Model", height=512, width=512, interactive=False)
prediction_display = gr.Image(label="Surya's Forecast", height=512, width=512, interactive=False)
target_display = gr.Image(label="Ground Truth", height=512, width=512, interactive=False)
run_button.click(
fn=forecast_controller,
inputs=[date_input, hour_slider, minute_slider, horizon_slider],
outputs=[
log_box, run_button, date_input, hour_slider, minute_slider, horizon_slider, results_group,
state_last_input, state_prediction, state_target,
input_display, prediction_display, target_display
]
)
channel_selector.change(
fn=generate_visualization,
inputs=[state_last_input, state_prediction, state_target, channel_selector],
outputs=[input_display, prediction_display, target_display]
)
if __name__ == "__main__":
demo.launch(debug=True) |