Spaces:
Runtime error
Runtime error
import wikipedia | |
from transformers import pipeline | |
import requests | |
from bs4 import BeautifulSoup | |
import re | |
import gradio as gr | |
# Initialize NLP model for understanding and generating text | |
model = "deepseek-ai/DeepSeek-R1-Distill-Qwen-7B" | |
#nlp = pipeline("question-answering") | |
#summarizer = pipeline("summarization") | |
nlp = pipeline(model=model) | |
#summarizer = pipeline(model=model) | |
def fetch_and_summarize(url): | |
response = requests.get(url) | |
soup = BeautifulSoup(response.text, 'html.parser') | |
content = soup.get_text() | |
summary = nlp(content[:10000]) # Limit content to avoid overwhelming the model | |
print(summary) | |
print(summary[0]) | |
return summary[0]['summary'] | |
def check_and_update_wikipedia(title, new_content): | |
try: | |
# Check if the page exists | |
page = wikipedia.page(title) | |
# Here, you would compare new_content with existing content | |
# and decide if an update is necessary. For simplicity, we'll just return feedback. | |
return f"Content for {title} exists. Comparison:\n{new_content[:100]}..." | |
except wikipedia.exceptions.PageError: | |
# If the page doesn't exist, you could create it, but here we'll just inform | |
return f"No page exists for {title}. New content could be:\n{new_content[:100]}..." | |
except wikipedia.exceptions.DisambiguationError as e: | |
# If there's ambiguity, handle it (for simplicity, we just return feedback) | |
return f"Disambiguation needed for {title}. Options: {e.options}" | |
def wiki_contributor(topic): | |
# Fetch and summarize content from an external source (e.g., arxiv.org) | |
external_content = fetch_and_summarize(f"https://arxiv.org/search/?query={topic}&searchtype=all") | |
# Generate or refine the content with NLP. Here's a placeholder for actual NLP operations: | |
enhanced_content = f"Enhanced content on {topic}: {external_content}" | |
# Check if Wikipedia needs updating or if we're creating a new entry | |
feedback = check_and_update_wikipedia(topic, enhanced_content) | |
return feedback | |
# Gradio Interface | |
iface = gr.Interface( | |
fn=wiki_contributor, | |
inputs=gr.Textbox(lines=1, placeholder="Enter topic here..."), | |
outputs="text", | |
title="AI Wikipedia Contributor", | |
description="Enter a topic to get feedback on how an AI could contribute to Wikipedia.", | |
) | |
# Launch the interface | |
iface.launch() |