Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from openai import OpenAI | |
| import os | |
| # Retrieve the access token from the environment variable | |
| ACCESS_TOKEN = os.getenv("HF_TOKEN") | |
| print("Access token loaded.") | |
| # Initialize the OpenAI client with the Hugging Face Inference API endpoint | |
| client = OpenAI( | |
| base_url="https://api-inference.huggingface.co/v1/", | |
| api_key=ACCESS_TOKEN, | |
| ) | |
| print("OpenAI client initialized.") | |
| def respond( | |
| message, | |
| history: list[tuple[str, str]], | |
| system_message, | |
| max_tokens, | |
| temperature, | |
| top_p, | |
| frequency_penalty, | |
| seed, | |
| model, | |
| custom_model | |
| ): | |
| """ | |
| This function handles the chatbot response. It takes in: | |
| - message: the user's new message | |
| - history: the list of previous messages, each as a tuple (user_msg, assistant_msg) | |
| - system_message: the system prompt | |
| - max_tokens: the maximum number of tokens to generate in the response | |
| - temperature: sampling temperature | |
| - top_p: top-p (nucleus) sampling | |
| - frequency_penalty: penalize repeated tokens in the output | |
| - seed: a fixed seed for reproducibility; -1 will mean 'random' | |
| - model: the selected model | |
| - custom_model: a custom model provided by the user | |
| """ | |
| print(f"Received message: {message}") | |
| print(f"History: {history}") | |
| print(f"System message: {system_message}") | |
| print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}") | |
| print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}") | |
| print(f"Model: {model}, Custom Model: {custom_model}") | |
| # Convert seed to None if -1 (meaning random) | |
| if seed == -1: | |
| seed = None | |
| # Use custom model if provided, otherwise use selected model | |
| if custom_model.strip() != "": | |
| model_to_use = custom_model.strip() | |
| else: | |
| model_to_use = model | |
| # Construct the messages array required by the API | |
| messages = [{"role": "system", "content": system_message}] | |
| # Add conversation history to the context | |
| for val in history: | |
| user_part = val[0] | |
| assistant_part = val[1] | |
| if user_part: | |
| messages.append({"role": "user", "content": user_part}) | |
| print(f"Added user message to context: {user_part}") | |
| if assistant_part: | |
| messages.append({"role": "assistant", "content": assistant_part}) | |
| print(f"Added assistant message to context: {assistant_part}") | |
| # Append the latest user message | |
| messages.append({"role": "user", "content": message}) | |
| # Start with an empty string to build the response as tokens stream in | |
| response = "" | |
| print("Sending request to OpenAI API.") | |
| # Make the streaming request to the HF Inference API via openai-like client | |
| for message_chunk in client.chat.completions.create( | |
| model=model_to_use, # Use the selected or custom model | |
| max_tokens=max_tokens, | |
| stream=True, # Stream the response | |
| temperature=temperature, | |
| top_p=top_p, | |
| frequency_penalty=frequency_penalty, | |
| seed=seed, | |
| messages=messages, | |
| ): | |
| # Extract the token text from the response chunk | |
| token_text = message_chunk.choices[0].delta.content | |
| print(f"Received token: {token_text}") | |
| response += token_text | |
| yield response | |
| print("Completed response generation.") | |
| # Create a Chatbot component with a specified height | |
| chatbot = gr.Chatbot(height=600) | |
| print("Chatbot interface created.") | |
| # List of placeholder models for demonstration | |
| models_list = [ | |
| "meta-llama/Llama-3.3-70B-Instruct", | |
| "meta-llama/Llama-2-70B-chat", | |
| "google/flan-t5-xl" | |
| ] | |
| # Function to filter models based on search input | |
| def filter_models(search_term): | |
| filtered_models = [m for m in models_list if search_term.lower() in m.lower()] | |
| return gr.update(choices=filtered_models) | |
| # Create the Gradio ChatInterface | |
| # Adding additional fields for model selection and parameters | |
| demo = gr.ChatInterface( | |
| respond, | |
| additional_inputs=[ | |
| gr.Textbox(value="", label="System message"), | |
| gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max new tokens"), | |
| gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
| gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P"), | |
| gr.Slider( | |
| minimum=-2.0, | |
| maximum=2.0, | |
| value=0.0, | |
| step=0.1, | |
| label="Frequency Penalty" | |
| ), | |
| gr.Slider( | |
| minimum=-1, | |
| maximum=65535, # Arbitrary upper limit for demonstration | |
| value=-1, | |
| step=1, | |
| label="Seed (-1 for random)" | |
| ), | |
| gr.Textbox(label="Custom Model", placeholder="Enter custom model path here"), | |
| gr.Accordion("Featured Models", open=True).update( | |
| gr.Column([ | |
| gr.Textbox(label="Filter Models", placeholder="Search for a featured model...").change( | |
| filter_models, inputs="__self__", outputs="model" | |
| ), | |
| gr.Radio(label="Select a model below", value="meta-llama/Llama-3.3-70B-Instruct", choices=models_list, interactive=True, elem_id="model-radio") | |
| ]) | |
| ) | |
| ], | |
| fill_height=True, | |
| chatbot=chatbot, | |
| theme="Nymbo/Nymbo_Theme", | |
| ) | |
| # Adding an "Information" tab with accordions for "Featured Models" and "Parameters Overview" | |
| with gr.Blocks(theme='Nymbo/Nymbo_Theme') as demo: | |
| with gr.Tab("Chat"): | |
| gr.Markdown("## Chat with the Model") | |
| chatbot.render() | |
| with gr.Tab("Information"): | |
| with gr.Accordion("Featured Models", open=False): | |
| gr.HTML( | |
| """ | |
| <p><a href="https://huggingface.co/models?inference=warm&pipeline_tag=text-generation&sort=trending">See all available models</a></p> | |
| <table style="width:100%; text-align:center; margin:auto;"> | |
| <tr> | |
| <th>Model Name</th> | |
| <th>Type</th> | |
| <th>Notes</th> | |
| </tr> | |
| <tr> | |
| <td>Llama-3.3-70B-Instruct</td> | |
| <td>Instruction</td> | |
| <td>High performance</td> | |
| </tr> | |
| <tr> | |
| <td>Llama-2-70B-chat</td> | |
| <td>Chat</td> | |
| <td>Conversational</td> | |
| </tr> | |
| <tr> | |
| <td>Flan-T5-XL</td> | |
| <td>General</td> | |
| <td>Versatile</td> | |
| </tr> | |
| </table> | |
| """ | |
| ) | |
| with gr.Accordion("Parameters Overview", open=False): | |
| gr.Markdown( | |
| """ | |
| ## Parameters Overview | |
| ### Max new tokens | |
| This slider controls the maximum number of tokens to generate in the response. | |
| ### Temperature | |
| Sampling temperature, which controls the randomness. A higher temperature makes the output more random. | |
| ### Top-P | |
| Top-p (nucleus) sampling, which controls the diversity. The model considers the smallest number of tokens whose cumulative probability exceeds the top-p threshold. | |
| ### Frequency Penalty | |
| Penalizes repeated tokens in the output, which helps to reduce repetition. | |
| ### Seed | |
| A fixed seed for reproducibility. Set to -1 for random seed. | |
| """ | |
| ) | |
| print("Launching the demo application.") | |
| demo.launch() |