File size: 11,210 Bytes
551ae1a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 |
import gradio as gr
import os
import requests
import json
from typing import List
# Inference Providers configuration
PROVIDERS = {
"cerebras": {
"name": "Cerebras",
"tasks": ["chat-completion"],
"base_url": "https://router.huggingface.co/cerebras",
},
"cohere": {
"name": "Cohere",
"tasks": ["chat-completion", "chat-completion-vlm"],
"base_url": "https://router.huggingface.co/cohere",
},
"fal-ai": {
"name": "Fal AI",
"tasks": ["chat-completion", "chat-completion-vlm"],
"base_url": "https://router.huggingface.co/fal-ai",
},
"featherless-ai": {
"name": "Featherless AI",
"tasks": ["chat-completion", "chat-completion-vlm"],
"base_url": "https://router.huggingface.co/featherless-ai",
},
"fireworks-ai": {
"name": "Fireworks",
"tasks": ["chat-completion", "chat-completion-vlm"],
"base_url": "https://router.huggingface.co/fireworks-ai",
},
"groq": {
"name": "Groq",
"tasks": ["chat-completion"],
"base_url": "https://router.huggingface.co/groq",
},
"hf-inference": {
"name": "HF Inference",
"tasks": ["chat-completion", "chat-completion-vlm"],
"base_url": "https://router.huggingface.co/hf-inference",
},
"hyperbolic": {
"name": "Hyperbolic",
"tasks": ["chat-completion", "chat-completion-vlm"],
"base_url": "https://router.huggingface.co/hyperbolic",
},
"nebius": {
"name": "Nebius",
"tasks": ["chat-completion", "chat-completion-vlm"],
"base_url": "https://router.huggingface.co/nebius",
},
"novita": {
"name": "Novita",
"tasks": ["chat-completion", "chat-completion-vlm"],
"base_url": "https://router.huggingface.co/novita",
},
"nscale": {
"name": "Nscale",
"tasks": ["chat-completion", "chat-completion-vlm"],
"base_url": "https://router.huggingface.co/nscale",
},
"replicate": {
"name": "Replicate",
"tasks": ["chat-completion", "chat-completion-vlm"],
"base_url": "https://router.huggingface.co/replicate",
},
"sambanova": {
"name": "SambaNova",
"tasks": ["chat-completion", "chat-completion-vlm"],
"base_url": "https://router.huggingface.co/sambanova",
},
"together": {
"name": "Together",
"tasks": ["chat-completion", "chat-completion-vlm"],
"base_url": "https://router.huggingface.co/together",
},
}
def chat_completion(
provider: str,
model: str,
messages: str,
temperature: float = 0.7,
max_tokens: int = 512,
):
"""Generate chat completions using Hugging Face Inference Providers.
This tool provides access to multiple AI providers and language models
through Hugging Face's unified Inference Providers API.
Args:
provider: The inference provider to use. Available providers:
cerebras, cohere, fal-ai, featherless-ai, fireworks-ai,
groq, hf-inference, hyperbolic, nebius, novita, nscale,
replicate, sambanova, together
model: The model ID from Hugging Face Hub
(e.g., 'deepseek-ai/DeepSeek-V3-0324')
messages: Either a JSON array of messages in OpenAI format or
plain text for simple queries
temperature: Controls response randomness (0.0-2.0, default 0.7)
max_tokens: Maximum tokens in response (1-4096, default 512)
Returns:
The generated text response from the language model
"""
# Get HF token from environment
hf_token = os.getenv("HF_TOKEN")
if not hf_token:
return (
"Error: HF_TOKEN environment variable is required. "
"Please set your Hugging Face token."
)
# Validate provider
if provider not in PROVIDERS:
available = ", ".join(PROVIDERS.keys())
return f"Error: Unknown provider '{provider}'. Available providers: {available}"
try:
# Parse messages
if messages.strip().startswith("["):
parsed_messages = json.loads(messages)
else:
parsed_messages = [{"role": "user", "content": messages}]
# Build request payload
payload = {
"model": model,
"messages": parsed_messages,
"temperature": temperature,
"max_tokens": max_tokens,
}
# Make request to provider
provider_config = PROVIDERS[provider]
url = f"{provider_config['base_url']}/v1/chat/completions"
headers = {
"Authorization": f"Bearer {hf_token}",
"Content-Type": "application/json",
}
response = requests.post(url, headers=headers, json=payload, timeout=60)
response.raise_for_status()
result = response.json()
# Extract response
if "choices" in result and len(result["choices"]) > 0:
return result["choices"][0]["message"]["content"]
else:
return f"Error: Unexpected response format: {json.dumps(result, indent=2)}"
except json.JSONDecodeError:
return (
"Error: Invalid JSON format for messages. "
"Use either plain text or valid JSON array."
)
except requests.exceptions.RequestException as e:
return f"Error: Request failed: {str(e)}"
except Exception as e:
return f"Error: {str(e)}"
def get_providers_for_task(task: str) -> List[str]:
"""Get available providers for a specific task"""
return [
provider for provider, config in PROVIDERS.items() if task in config["tasks"]
]
# Create Gradio interface
with gr.Blocks(title="Inference Providers MCP Server", theme=gr.themes.Soft()) as app:
gr.Markdown("""
# π€ Inference Providers MCP Server
A streamlined Model Context Protocol (MCP) server for Hugging Face
Inference Providers, providing LLMs with access to multiple AI
providers through a simple, focused interface.
**Supported Providers:** Cerebras, Cohere, Fal AI, Featherless AI,
Fireworks, Groq, HF Inference, Hyperbolic, Nebius, Novita, Nscale,
Replicate, SambaNova, Together
**Required:** Set HF_TOKEN environment variable with your Hugging Face
token that has Inference Providers access.
""")
# Environment status
hf_token_status = "β
Set" if os.getenv("HF_TOKEN") else "β Not Set"
gr.Markdown(f"**HF_TOKEN Status:** {hf_token_status}")
if not os.getenv("HF_TOKEN"):
gr.Markdown("""
**β οΈ Setup Required:**
1. Get token: [HF Settings](https://huggingface.co/settings/tokens)
2. Set environment: `export HF_TOKEN=hf_your_token_here`
3. Restart application
""")
with gr.Tabs():
# Chat Completion Tab
with gr.Tab("π¬ Chat Completion", id="chat"):
with gr.Row():
with gr.Column(scale=1):
chat_provider = gr.Dropdown(
choices=get_providers_for_task("chat-completion"),
label="Provider",
value="novita",
info="Select inference provider",
)
chat_model = gr.Textbox(
label="Model",
value="deepseek-ai/DeepSeek-V3-0324",
placeholder="e.g., deepseek-ai/DeepSeek-V3-0324",
info="Model ID from Hugging Face Hub",
)
with gr.Column(scale=2):
chat_messages = gr.Textbox(
label="Messages",
lines=8,
placeholder=(
'[{"role": "user", "content": "Hello!"}]'
"\n\nOr just type directly"
),
info="JSON array of messages or plain text",
)
with gr.Accordion("βοΈ Parameters", open=False):
with gr.Row():
chat_temperature = gr.Slider(0.0, 2.0, 0.7, label="Temperature")
chat_max_tokens = gr.Slider(1, 4096, 512, label="Max Tokens")
chat_submit = gr.Button("π Generate", variant="primary")
chat_output = gr.Textbox(label="Response", lines=10)
chat_submit.click(
chat_completion,
inputs=[
chat_provider,
chat_model,
chat_messages,
chat_temperature,
chat_max_tokens,
],
outputs=chat_output,
)
# MCP Documentation Tab
with gr.Tab("π§ MCP Setup", id="mcp"):
gr.Markdown("""
## π€ MCP Server Setup
This MCP server exposes `chat_completion` tool for LLMs to access
Hugging Face Inference Providers.
### π‘ Server URL
**Local:** `http://localhost:7860/gradio_api/mcp/sse`
**HF Spaces:** `https://username-spacename.hf.space/gradio_api/mcp/sse`
### βοΈ Client Configuration
#### Cursor IDE
Add to `.cursor/mcp.json`:
```json
{
"mcpServers": {
"inference-providers": {
"url": "YOUR_URL/gradio_api/mcp/sse"
}
}
}
```
#### Claude Desktop
Add to MCP settings:
```json
{
"mcpServers": {
"inference-providers": {
"command": "npx",
"args": [
"mcp-remote",
"YOUR_URL/gradio_api/mcp/sse",
"--transport", "sse-only"
]
}
}
}
```
### π οΈ Tool Details
**`chat_completion`** - Generate chat responses
**Parameters:**
- `provider`: Provider name (novita, groq, etc.)
- `model`: Model ID (deepseek-ai/DeepSeek-V3-0324)
- `messages`: Input text or JSON messages
- `temperature`: Randomness (0.0-2.0, default: 0.7)
- `max_tokens`: Max length (1-4096, default: 512)
**Environment:** Requires HF_TOKEN
### π― Usage
> "Use chat completion with Groq and Llama to explain Python"
### π Links
- [Cursor MCP](https://docs.cursor.com/context/model-context-protocol)
- [Gradio MCP Guide](https://huggingface.co/blog/gradio-mcp)
- [Get HF Token](https://huggingface.co/settings/tokens)
""")
if __name__ == "__main__":
# Enable MCP server functionality
app.launch(mcp_server=True)
|