Spaces:
Sleeping
Sleeping
File size: 14,270 Bytes
29cd9c0 0f7e916 29cd9c0 0f7e916 2c69943 29cd9c0 2c69943 9385ac2 2c69943 9385ac2 2c69943 9385ac2 2c69943 0f7e916 2c69943 0f7e916 2c69943 0f7e916 2c69943 0f7e916 2c69943 9385ac2 2c69943 0f7e916 2c69943 9385ac2 2c69943 9385ac2 2c69943 9385ac2 2c69943 0f7e916 2c69943 0f7e916 2c69943 0f7e916 2c69943 9385ac2 2c69943 0f7e916 2c69943 29cd9c0 2c69943 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
import os
import random
from statistics import mean
from typing import Iterator, Union, Any
import fasttext
import gradio as gr
from dotenv import load_dotenv
from huggingface_hub import hf_hub_download
from huggingface_hub.utils import logging
from toolz import concat, groupby, valmap
from pathlib import Path
logger = logging.get_logger(__name__)
load_dotenv()
DEFAULT_FAST_TEXT_MODEL = "laurievb/OpenLID"
# Language code mapping - feel free to expand this
LANGUAGE_MAPPING = {
"spa_Latn": {"name": "Spanish", "iso_639_1": "es", "full_code": "es_ES"},
"eng_Latn": {"name": "English", "iso_639_1": "en", "full_code": "en_US"},
"fra_Latn": {"name": "French", "iso_639_1": "fr", "full_code": "fr_FR"},
"deu_Latn": {"name": "German", "iso_639_1": "de", "full_code": "de_DE"},
"ita_Latn": {"name": "Italian", "iso_639_1": "it", "full_code": "it_IT"},
"por_Latn": {"name": "Portuguese", "iso_639_1": "pt", "full_code": "pt_PT"},
"rus_Cyrl": {"name": "Russian", "iso_639_1": "ru", "full_code": "ru_RU"},
"zho_Hans": {"name": "Chinese (Simplified)", "iso_639_1": "zh", "full_code": "zh_CN"},
"zho_Hant": {"name": "Chinese (Traditional)", "iso_639_1": "zh", "full_code": "zh_TW"},
"jpn_Jpan": {"name": "Japanese", "iso_639_1": "ja", "full_code": "ja_JP"},
"kor_Hang": {"name": "Korean", "iso_639_1": "ko", "full_code": "ko_KR"},
"ara_Arab": {"name": "Arabic", "iso_639_1": "ar", "full_code": "ar_SA"},
"hin_Deva": {"name": "Hindi", "iso_639_1": "hi", "full_code": "hi_IN"},
"cat_Latn": {"name": "Catalan", "iso_639_1": "ca", "full_code": "ca_ES"},
"glg_Latn": {"name": "Galician", "iso_639_1": "gl", "full_code": "gl_ES"},
"nld_Latn": {"name": "Dutch", "iso_639_1": "nl", "full_code": "nl_NL"},
"swe_Latn": {"name": "Swedish", "iso_639_1": "sv", "full_code": "sv_SE"},
"nor_Latn": {"name": "Norwegian", "iso_639_1": "no", "full_code": "no_NO"},
"dan_Latn": {"name": "Danish", "iso_639_1": "da", "full_code": "da_DK"},
"fin_Latn": {"name": "Finnish", "iso_639_1": "fi", "full_code": "fi_FI"},
"pol_Latn": {"name": "Polish", "iso_639_1": "pl", "full_code": "pl_PL"},
"ces_Latn": {"name": "Czech", "iso_639_1": "cs", "full_code": "cs_CZ"},
"hun_Latn": {"name": "Hungarian", "iso_639_1": "hu", "full_code": "hu_HU"},
"tur_Latn": {"name": "Turkish", "iso_639_1": "tr", "full_code": "tr_TR"},
"heb_Hebr": {"name": "Hebrew", "iso_639_1": "he", "full_code": "he_IL"},
"tha_Thai": {"name": "Thai", "iso_639_1": "th", "full_code": "th_TH"},
"vie_Latn": {"name": "Vietnamese", "iso_639_1": "vi", "full_code": "vi_VN"},
"ukr_Cyrl": {"name": "Ukrainian", "iso_639_1": "uk", "full_code": "uk_UA"},
"ell_Grek": {"name": "Greek", "iso_639_1": "el", "full_code": "el_GR"},
"bul_Cyrl": {"name": "Bulgarian", "iso_639_1": "bg", "full_code": "bg_BG"},
"ron_Latn": {"name": "Romanian", "iso_639_1": "ro", "full_code": "ro_RO"},
"hrv_Latn": {"name": "Croatian", "iso_639_1": "hr", "full_code": "hr_HR"},
"srp_Cyrl": {"name": "Serbian", "iso_639_1": "sr", "full_code": "sr_RS"},
"slv_Latn": {"name": "Slovenian", "iso_639_1": "sl", "full_code": "sl_SI"},
"slk_Latn": {"name": "Slovak", "iso_639_1": "sk", "full_code": "sk_SK"},
"est_Latn": {"name": "Estonian", "iso_639_1": "et", "full_code": "et_EE"},
"lav_Latn": {"name": "Latvian", "iso_639_1": "lv", "full_code": "lv_LV"},
"lit_Latn": {"name": "Lithuanian", "iso_639_1": "lt", "full_code": "lt_LT"},
"msa_Latn": {"name": "Malay", "iso_639_1": "ms", "full_code": "ms_MY"},
"ind_Latn": {"name": "Indonesian", "iso_639_1": "id", "full_code": "id_ID"},
"tgl_Latn": {"name": "Filipino", "iso_639_1": "tl", "full_code": "tl_PH"},
}
def load_model(repo_id: str) -> fasttext.FastText._FastText:
model_path = hf_hub_download(repo_id, filename="model.bin")
return fasttext.load_model(model_path)
def yield_clean_rows(rows: Union[list[str], str], min_length: int = 3) -> Iterator[str]:
for row in rows:
if isinstance(row, str):
# split on lines and remove empty lines
line = row.split("\n")
for line in line:
if line:
yield line
elif isinstance(row, list):
try:
line = " ".join(row)
if len(line) < min_length:
continue
else:
yield line
except TypeError:
continue
FASTTEXT_PREFIX_LENGTH = 9 # fasttext labels are formatted like "__label__eng_Latn"
def format_language_info(fasttext_code):
"""Convert FastText language code to human readable format"""
if fasttext_code in LANGUAGE_MAPPING:
lang_info = LANGUAGE_MAPPING[fasttext_code]
return {
"name": lang_info["name"],
"iso_code": lang_info["iso_639_1"],
"full_code": lang_info["full_code"],
"fasttext_code": fasttext_code
}
else:
# Graceful fallback for unmapped languages
return {
"name": fasttext_code,
"iso_code": "unknown",
"full_code": "unknown",
"fasttext_code": fasttext_code
}
def detect_language_segments(text, confidence_threshold=0.3):
"""Detect language changes in text segments"""
# Split text into logical segments (sentences, clauses)
import re
# More sophisticated splitting on common separators
segments = re.split(r'[.!?;/|]\s+|\s+/\s+|\s+\|\s+', text.strip())
segments = [seg.strip() for seg in segments if seg.strip() and len(seg.strip()) > 10]
if len(segments) < 2:
return None
segment_results = []
for i, segment in enumerate(segments):
predictions = model_predict(segment, k=1)
if predictions and predictions[0]['score'] > confidence_threshold:
lang_info = format_language_info(predictions[0]['label'])
segment_results.append({
"segment_number": i + 1,
"text": segment,
"language": lang_info,
"confidence": predictions[0]['score']
})
# Check if we found different languages
languages_found = set(result['language']['fasttext_code'] for result in segment_results)
if len(languages_found) > 1:
return {
"is_multilingual": True,
"languages_detected": list(languages_found),
"segments": segment_results
}
return None
# Load the model
Path("code/models").mkdir(parents=True, exist_ok=True)
model = fasttext.load_model(
hf_hub_download(
"facebook/fasttext-language-identification",
"model.bin",
cache_dir="code/models",
local_dir="code/models",
local_dir_use_symlinks=False,
)
)
def model_predict(inputs: str, k=1) -> list[dict[str, float]]:
predictions = model.predict(inputs, k=k)
return [
{"label": label[FASTTEXT_PREFIX_LENGTH:], "score": prob}
for label, prob in zip(predictions[0], predictions[1])
]
def get_label(x):
return x.get("label")
def get_mean_score(preds):
return mean([pred.get("score") for pred in preds])
def filter_by_frequency(counts_dict: dict, threshold_percent: float = 0.2):
"""Filter a dict to include items whose value is above `threshold_percent`"""
total = sum(counts_dict.values())
threshold = total * threshold_percent
return {k for k, v in counts_dict.items() if v >= threshold}
def simple_predict(text, num_predictions=3):
"""Simple language detection function for Gradio interface"""
if not text or not text.strip():
return {"error": "Please enter some text for language detection."}
try:
# Clean the text
cleaned_lines = list(yield_clean_rows([text]))
if not cleaned_lines:
return {"error": "No valid text found after cleaning."}
# Get predictions for each line
all_predictions = []
for line in cleaned_lines:
predictions = model_predict(line, k=num_predictions)
all_predictions.extend(predictions)
if not all_predictions:
return {"error": "No predictions could be made."}
# Group predictions by language
predictions_by_lang = groupby(get_label, all_predictions)
language_counts = valmap(len, predictions_by_lang)
# Calculate average scores for each language
language_scores = valmap(get_mean_score, predictions_by_lang)
# Format results
# Format with human-readable language info
formatted_languages = {}
for fasttext_code, score in language_scores.items():
lang_info = format_language_info(fasttext_code)
formatted_languages[fasttext_code] = {
"score": score,
"language_info": lang_info
}
# Check for multilingual segments
segment_analysis = detect_language_segments(text)
# Format results
results = {
"detected_languages": formatted_languages,
"language_counts": dict(language_counts),
"total_predictions": len(all_predictions),
"text_lines_analyzed": len(cleaned_lines)
}
# Add segment analysis if multilingual
if segment_analysis:
results["segment_analysis"] = segment_analysis
return results
except Exception as e:
return {"error": f"Error during prediction: {str(e)}"}
def batch_predict(text, threshold_percent=0.2):
"""More advanced prediction with filtering"""
if not text or not text.strip():
return {"error": "Please enter some text for language detection."}
try:
# Clean the text
cleaned_lines = list(yield_clean_rows([text]))
if not cleaned_lines:
return {"error": "No valid text found after cleaning."}
# Get predictions
predictions = [model_predict(line) for line in cleaned_lines]
predictions = [pred for pred in predictions if pred is not None]
predictions = list(concat(predictions))
if not predictions:
return {"error": "No predictions could be made."}
# Group and filter
predictions_by_lang = groupby(get_label, predictions)
language_counts = valmap(len, predictions_by_lang)
keys_to_keep = filter_by_frequency(language_counts, threshold_percent=threshold_percent)
filtered_dict = {k: v for k, v in predictions_by_lang.items() if k in keys_to_keep}
# Format with human-readable language info
formatted_predictions = {}
for fasttext_code, score in valmap(get_mean_score, filtered_dict).items():
lang_info = format_language_info(fasttext_code)
formatted_predictions[fasttext_code] = {
"score": score,
"language_info": lang_info
}
# Check for multilingual segments
segment_analysis = detect_language_segments(text)
results = {
"predictions": formatted_predictions,
"all_language_counts": dict(language_counts),
"filtered_languages": list(keys_to_keep),
"threshold_used": threshold_percent
}
# Add segment analysis if multilingual
if segment_analysis:
results["segment_analysis"] = segment_analysis
return results
except Exception as e:
return {"error": f"Error during prediction: {str(e)}"}
def build_demo_interface():
app_title = "Language Detection Tool"
with gr.Blocks(title=app_title) as demo:
gr.Markdown(f"# {app_title}")
gr.Markdown("Enter text below to detect the language(s) it contains.")
with gr.Tab("Simple Detection"):
with gr.Row():
with gr.Column():
text_input1 = gr.Textbox(
label="Enter text for language detection",
placeholder="Type or paste your text here...",
lines=5
)
num_predictions = gr.Slider(
minimum=1,
maximum=10,
value=3,
step=1,
label="Number of top predictions per line"
)
predict_btn1 = gr.Button("Detect Language")
with gr.Column():
output1 = gr.JSON(label="Detection Results")
predict_btn1.click(
simple_predict,
inputs=[text_input1, num_predictions],
outputs=output1
)
with gr.Tab("Advanced Detection"):
with gr.Row():
with gr.Column():
text_input2 = gr.Textbox(
label="Enter text for advanced language detection",
placeholder="Type or paste your text here...",
lines=5
)
threshold = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.2,
step=0.1,
label="Threshold percentage for filtering"
)
predict_btn2 = gr.Button("Advanced Detect")
with gr.Column():
output2 = gr.JSON(label="Advanced Detection Results")
predict_btn2.click(
batch_predict,
inputs=[text_input2, threshold],
outputs=output2
)
gr.Markdown("### About")
gr.Markdown("This tool uses Facebook's FastText language identification model to detect languages in text.")
return demo
if __name__ == "__main__":
demo = build_demo_interface()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False
) |