File size: 10,147 Bytes
0f74281
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1f32cc
0f74281
bc39e49
0f74281
f1f32cc
0f74281
 
 
f1f32cc
 
 
0f74281
 
 
 
 
 
 
f1f32cc
0f74281
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09b05c1
0f74281
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1f32cc
 
0f74281
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a15f5f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates. All rights reserved.

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

#     http://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import dataclasses
import json
import os
from pathlib import Path

import gradio as gr
import torch
import spaces

from uso.flux.pipeline import USOPipeline
from transformers import SiglipVisionModel, SiglipImageProcessor


with open("assets/uso_text.svg", "r", encoding="utf-8") as svg_file:
    text_content = svg_file.read()

with open("assets/uso_logo.svg", "r", encoding="utf-8") as svg_file:
    logo_content = svg_file.read()

title = f"""
<div style="display: flex; align-items: center; justify-content: center;">
    <span style="transform: scale(0.7);margin-right: -5px;">{text_content}</span>    
    <span style="font-size: 1.8em;margin-left: -10px;font-weight: bold; font-family: Gill Sans;">by UXO Team</span>
    <span style="margin-left: 0px; transform: scale(0.85); display: inline-block;">{logo_content}</span>
</div>
""".strip()

badges_text = r"""
<div style="text-align: center; display: flex; justify-content: center; gap: 5px;">
<a href="https://github.com/bytedance/USO"><img src="https://img.shields.io/static/v1?label=GitHub&message=Code&color=green&logo=github"></a>
<a href="https://bytedance.github.io/USO/"><img alt="Build" src="https://img.shields.io/badge/Project%20Page-USO-yellow"></a>
<a href="https://arxiv.org/abs/2504.02160"><img alt="Build" src="https://img.shields.io/badge/arXiv%20paper-USO-b31b1b.svg"></a>
<a href="https://huggingface.co/bytedance-research/USO"><img src="https://img.shields.io/static/v1?label=%F0%9F%A4%97%20Hugging%20Face&message=Model&color=orange"></a>
</div>
""".strip()

tips = """
**What is USO?**  🎨
USO is a unified style-subject optimized customization model and the latest addition to the UXO family (<a href='https://github.com/bytedance/USO' target='_blank'> USO</a> and <a href='https://github.com/bytedance/UNO' target='_blank'> UNO</a>). 
It can freely combine any subjects with any styles in any scenarios.

**How to use?**    💡
We provide step-by-step instructions in our <a href='https://github.com/bytedance/USO' target='_blank'> Github Repo</a>.
Additionally, try the examples provided below the demo to quickly get familiar with USO and spark your creativity!

<details>
<summary style="cursor: pointer; color: #d34c0e; font-weight: 500;">The model is trained on 1024x1024 resolution and supports 3 types of usage. 📌 Tips:</summary>

* **Only content img**: support following types:
  * Subject/Identity-driven (supports natural prompt, e.g., *A clock on the table.* *The woman near the sea.*, excels in producing **photorealistic portraits**)
  * Style edit (layout-preserved): *Transform the image into Ghibli style/Pixel style/Retro comic style/Watercolor painting style...*.
  * Style edit (layout-shift): *Ghibli style, the man on the beach.*.
* **Only style img**: Reference input style and generate anything following prompt. Excelling in this and further support multiple style references (in beta).
* **Content img + style img**: Place the content into the desired style. 
  * Layout-preserved: set prompt to **empty**.
  * Layout-shift: using natural prompt.</details>"""

star = r"""
If USO is helpful, please help to ⭐ our <a href='https://github.com/bytedance/USO' target='_blank'> Github Repo</a>. Thanks a lot!"""

def get_examples(examples_dir: str = "assets/examples") -> list:
    examples = Path(examples_dir)
    ans = []  
    for example in examples.iterdir():
        if not example.is_dir() or len(os.listdir(example)) == 0:
            continue
        with open(example / "config.json") as f:
            example_dict = json.load(f)


        example_list = []

        # example_list.append(example_dict["usage"])  # case for
        example_list.append(example_dict["prompt"])  # prompt

        for key in ["image_ref1", "image_ref2", "image_ref3"]:
            if key in example_dict:
                example_list.append(str(example / example_dict[key]))
            else:
                example_list.append(None)

        example_list.append(example_dict["seed"])
        ans.append(example_list)
    return ans


def create_demo(
    model_type: str,
    device: str = "cuda" if torch.cuda.is_available() else "cpu",
    offload: bool = False,
):
    pipeline = USOPipeline(
        model_type, device, offload, only_lora=True, lora_rank=128, hf_download=True
    )
    print("USOPipeline loaded successfully")

    siglip_processor = SiglipImageProcessor.from_pretrained(
        "google/siglip-so400m-patch14-384"
    )
    siglip_model = SiglipVisionModel.from_pretrained(
        "google/siglip-so400m-patch14-384"
    )
    siglip_model.eval()
    siglip_model.to(device)
    pipeline.model.vision_encoder = siglip_model
    pipeline.model.vision_encoder_processor = siglip_processor
    print("SigLIP model loaded successfully")

    pipeline.gradio_generate = spaces.GPU(duration=120)(pipeline.gradio_generate)
    with gr.Blocks() as demo:
        gr.Markdown(title)
        gr.Markdown(badges_text)
        gr.Markdown(tips)
        with gr.Row():
            with gr.Column():
                prompt = gr.Textbox(label="Prompt", value="A beautiful woman.")
                with gr.Row():
                    image_prompt1 = gr.Image(
                        label="Content Reference Img", visible=True, interactive=True, type="pil"
                    )
                    image_prompt2 = gr.Image(
                        label="Style Reference Img", visible=True, interactive=True, type="pil"
                    )
                    image_prompt3 = gr.Image(
                        label="Extra Style Reference Img (Beta)", visible=True, interactive=True, type="pil"
                    )

                with gr.Row():
                    with gr.Row():
                        width = gr.Slider(
                            512, 1536, 1024, step=16, label="Generation Width"
                        )
                        height = gr.Slider(
                            512, 1536, 1024, step=16, label="Generation Height"
                        )
                with gr.Row():
                    with gr.Row():
                        keep_size = gr.Checkbox(
                            label="Keep input size",
                            value=False,
                            interactive=True
                        )
                    with gr.Column():
                        gr.Markdown("Set it to True if you only need style editing or want to keep the layout.")

                with gr.Accordion("Advanced Options", open=True):
                    with gr.Row():
                        num_steps = gr.Slider(
                            1, 50, 25, step=1, label="Number of steps"
                        )
                        guidance = gr.Slider(
                            1.0, 5.0, 4.0, step=0.1, label="Guidance", interactive=True
                        )
                        content_long_size = gr.Slider(
                            0, 1024, 512, step=16, label="Content reference size"
                        )                        
                        seed = gr.Number(-1, label="Seed (-1 for random)")

                generate_btn = gr.Button("Generate")
                gr.Markdown(star)

            with gr.Column():
                output_image = gr.Image(label="Generated Image")
                download_btn = gr.File(
                    label="Download full-resolution", type="filepath", interactive=False
                )

            inputs = [
                prompt,
                image_prompt1,
                image_prompt2,
                image_prompt3,
                seed,                     
                width,
                height,
                guidance,
                num_steps,
                keep_size,
                content_long_size,
            ]
            generate_btn.click(
                fn=pipeline.gradio_generate,
                inputs=inputs,
                outputs=[output_image, download_btn],
            )   

        example_text = gr.Text("", visible=False, label="Case For:")
        examples = get_examples("./assets/gradio_examples")

        gr.Examples(
            examples=examples,
            inputs=[
                prompt,
                image_prompt1,
                image_prompt2,
                image_prompt3,
                seed,
            ],
            # cache_examples='lazy',
            outputs=[output_image, download_btn],
            fn=pipeline.gradio_generate,
            label='row 1-4: identity/subject-driven; row 5-7: style-subject-driven; row 8-9: style-driven; row 10-12: multi-style-driven task; row 13: txt2img',
            examples_per_page=15
        )

    return demo


if __name__ == "__main__":
    from typing import Literal

    from transformers import HfArgumentParser

    @dataclasses.dataclass
    class AppArgs:
        name: Literal["flux-dev", "flux-dev-fp8", "flux-schnell", "flux-krea-dev"] = "flux-dev"
        device: Literal["cuda", "cpu"] = "cuda" if torch.cuda.is_available() else "cpu"
        offload: bool = dataclasses.field(
            default=False,
            metadata={
                "help": "If True, sequantial offload the models(ae, dit, text encoder) to CPU if not used."
            },
        )
        port: int = 7860

    parser = HfArgumentParser([AppArgs])
    args_tuple = parser.parse_args_into_dataclasses()  # type: tuple[AppArgs]
    args = args_tuple[0]

    demo = create_demo(args.name, args.device, args.offload)
    demo.launch(server_port=args.port, ssr_mode=False)