Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,147 Bytes
0f74281 f1f32cc 0f74281 bc39e49 0f74281 f1f32cc 0f74281 f1f32cc 0f74281 f1f32cc 0f74281 09b05c1 0f74281 f1f32cc 0f74281 1a15f5f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates. All rights reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import dataclasses
import json
import os
from pathlib import Path
import gradio as gr
import torch
import spaces
from uso.flux.pipeline import USOPipeline
from transformers import SiglipVisionModel, SiglipImageProcessor
with open("assets/uso_text.svg", "r", encoding="utf-8") as svg_file:
text_content = svg_file.read()
with open("assets/uso_logo.svg", "r", encoding="utf-8") as svg_file:
logo_content = svg_file.read()
title = f"""
<div style="display: flex; align-items: center; justify-content: center;">
<span style="transform: scale(0.7);margin-right: -5px;">{text_content}</span>
<span style="font-size: 1.8em;margin-left: -10px;font-weight: bold; font-family: Gill Sans;">by UXO Team</span>
<span style="margin-left: 0px; transform: scale(0.85); display: inline-block;">{logo_content}</span>
</div>
""".strip()
badges_text = r"""
<div style="text-align: center; display: flex; justify-content: center; gap: 5px;">
<a href="https://github.com/bytedance/USO"><img src="https://img.shields.io/static/v1?label=GitHub&message=Code&color=green&logo=github"></a>
<a href="https://bytedance.github.io/USO/"><img alt="Build" src="https://img.shields.io/badge/Project%20Page-USO-yellow"></a>
<a href="https://arxiv.org/abs/2504.02160"><img alt="Build" src="https://img.shields.io/badge/arXiv%20paper-USO-b31b1b.svg"></a>
<a href="https://huggingface.co/bytedance-research/USO"><img src="https://img.shields.io/static/v1?label=%F0%9F%A4%97%20Hugging%20Face&message=Model&color=orange"></a>
</div>
""".strip()
tips = """
**What is USO?** 🎨
USO is a unified style-subject optimized customization model and the latest addition to the UXO family (<a href='https://github.com/bytedance/USO' target='_blank'> USO</a> and <a href='https://github.com/bytedance/UNO' target='_blank'> UNO</a>).
It can freely combine any subjects with any styles in any scenarios.
**How to use?** 💡
We provide step-by-step instructions in our <a href='https://github.com/bytedance/USO' target='_blank'> Github Repo</a>.
Additionally, try the examples provided below the demo to quickly get familiar with USO and spark your creativity!
<details>
<summary style="cursor: pointer; color: #d34c0e; font-weight: 500;">The model is trained on 1024x1024 resolution and supports 3 types of usage. 📌 Tips:</summary>
* **Only content img**: support following types:
* Subject/Identity-driven (supports natural prompt, e.g., *A clock on the table.* *The woman near the sea.*, excels in producing **photorealistic portraits**)
* Style edit (layout-preserved): *Transform the image into Ghibli style/Pixel style/Retro comic style/Watercolor painting style...*.
* Style edit (layout-shift): *Ghibli style, the man on the beach.*.
* **Only style img**: Reference input style and generate anything following prompt. Excelling in this and further support multiple style references (in beta).
* **Content img + style img**: Place the content into the desired style.
* Layout-preserved: set prompt to **empty**.
* Layout-shift: using natural prompt.</details>"""
star = r"""
If USO is helpful, please help to ⭐ our <a href='https://github.com/bytedance/USO' target='_blank'> Github Repo</a>. Thanks a lot!"""
def get_examples(examples_dir: str = "assets/examples") -> list:
examples = Path(examples_dir)
ans = []
for example in examples.iterdir():
if not example.is_dir() or len(os.listdir(example)) == 0:
continue
with open(example / "config.json") as f:
example_dict = json.load(f)
example_list = []
# example_list.append(example_dict["usage"]) # case for
example_list.append(example_dict["prompt"]) # prompt
for key in ["image_ref1", "image_ref2", "image_ref3"]:
if key in example_dict:
example_list.append(str(example / example_dict[key]))
else:
example_list.append(None)
example_list.append(example_dict["seed"])
ans.append(example_list)
return ans
def create_demo(
model_type: str,
device: str = "cuda" if torch.cuda.is_available() else "cpu",
offload: bool = False,
):
pipeline = USOPipeline(
model_type, device, offload, only_lora=True, lora_rank=128, hf_download=True
)
print("USOPipeline loaded successfully")
siglip_processor = SiglipImageProcessor.from_pretrained(
"google/siglip-so400m-patch14-384"
)
siglip_model = SiglipVisionModel.from_pretrained(
"google/siglip-so400m-patch14-384"
)
siglip_model.eval()
siglip_model.to(device)
pipeline.model.vision_encoder = siglip_model
pipeline.model.vision_encoder_processor = siglip_processor
print("SigLIP model loaded successfully")
pipeline.gradio_generate = spaces.GPU(duration=120)(pipeline.gradio_generate)
with gr.Blocks() as demo:
gr.Markdown(title)
gr.Markdown(badges_text)
gr.Markdown(tips)
with gr.Row():
with gr.Column():
prompt = gr.Textbox(label="Prompt", value="A beautiful woman.")
with gr.Row():
image_prompt1 = gr.Image(
label="Content Reference Img", visible=True, interactive=True, type="pil"
)
image_prompt2 = gr.Image(
label="Style Reference Img", visible=True, interactive=True, type="pil"
)
image_prompt3 = gr.Image(
label="Extra Style Reference Img (Beta)", visible=True, interactive=True, type="pil"
)
with gr.Row():
with gr.Row():
width = gr.Slider(
512, 1536, 1024, step=16, label="Generation Width"
)
height = gr.Slider(
512, 1536, 1024, step=16, label="Generation Height"
)
with gr.Row():
with gr.Row():
keep_size = gr.Checkbox(
label="Keep input size",
value=False,
interactive=True
)
with gr.Column():
gr.Markdown("Set it to True if you only need style editing or want to keep the layout.")
with gr.Accordion("Advanced Options", open=True):
with gr.Row():
num_steps = gr.Slider(
1, 50, 25, step=1, label="Number of steps"
)
guidance = gr.Slider(
1.0, 5.0, 4.0, step=0.1, label="Guidance", interactive=True
)
content_long_size = gr.Slider(
0, 1024, 512, step=16, label="Content reference size"
)
seed = gr.Number(-1, label="Seed (-1 for random)")
generate_btn = gr.Button("Generate")
gr.Markdown(star)
with gr.Column():
output_image = gr.Image(label="Generated Image")
download_btn = gr.File(
label="Download full-resolution", type="filepath", interactive=False
)
inputs = [
prompt,
image_prompt1,
image_prompt2,
image_prompt3,
seed,
width,
height,
guidance,
num_steps,
keep_size,
content_long_size,
]
generate_btn.click(
fn=pipeline.gradio_generate,
inputs=inputs,
outputs=[output_image, download_btn],
)
example_text = gr.Text("", visible=False, label="Case For:")
examples = get_examples("./assets/gradio_examples")
gr.Examples(
examples=examples,
inputs=[
prompt,
image_prompt1,
image_prompt2,
image_prompt3,
seed,
],
# cache_examples='lazy',
outputs=[output_image, download_btn],
fn=pipeline.gradio_generate,
label='row 1-4: identity/subject-driven; row 5-7: style-subject-driven; row 8-9: style-driven; row 10-12: multi-style-driven task; row 13: txt2img',
examples_per_page=15
)
return demo
if __name__ == "__main__":
from typing import Literal
from transformers import HfArgumentParser
@dataclasses.dataclass
class AppArgs:
name: Literal["flux-dev", "flux-dev-fp8", "flux-schnell", "flux-krea-dev"] = "flux-dev"
device: Literal["cuda", "cpu"] = "cuda" if torch.cuda.is_available() else "cpu"
offload: bool = dataclasses.field(
default=False,
metadata={
"help": "If True, sequantial offload the models(ae, dit, text encoder) to CPU if not used."
},
)
port: int = 7860
parser = HfArgumentParser([AppArgs])
args_tuple = parser.parse_args_into_dataclasses() # type: tuple[AppArgs]
args = args_tuple[0]
demo = create_demo(args.name, args.device, args.offload)
demo.launch(server_port=args.port, ssr_mode=False)
|