File size: 13,511 Bytes
0f74281
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates. All rights reserved.
# Copyright (c) 2024 Black Forest Labs and The XLabs-AI Team. All rights reserved.

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

#     http://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import math
from typing import Literal, Optional
from torch import Tensor

import torch
from einops import rearrange
from PIL import ExifTags, Image
import torchvision.transforms.functional as TVF

from uso.flux.modules.layers import (
    DoubleStreamBlockLoraProcessor,
    DoubleStreamBlockProcessor,
    SingleStreamBlockLoraProcessor,
    SingleStreamBlockProcessor,
)
from uso.flux.sampling import denoise, get_noise, get_schedule, prepare_multi_ip, unpack
from uso.flux.util import (
    get_lora_rank,
    load_ae,
    load_checkpoint,
    load_clip,
    load_flow_model,
    load_flow_model_only_lora,
    load_t5,
)


def find_nearest_scale(image_h, image_w, predefined_scales):
    """
    根据图片的高度和宽度,找到最近的预定义尺度。

    :param image_h: 图片的高度
    :param image_w: 图片的宽度
    :param predefined_scales: 预定义尺度列表 [(h1, w1), (h2, w2), ...]
    :return: 最近的预定义尺度 (h, w)
    """
    # 计算输入图片的长宽比
    image_ratio = image_h / image_w

    # 初始化变量以存储最小差异和最近的尺度
    min_diff = float("inf")
    nearest_scale = None

    # 遍历所有预定义尺度,找到与输入图片长宽比最接近的尺度
    for scale_h, scale_w in predefined_scales:
        predefined_ratio = scale_h / scale_w
        diff = abs(predefined_ratio - image_ratio)

        if diff < min_diff:
            min_diff = diff
            nearest_scale = (scale_h, scale_w)

    return nearest_scale


def preprocess_ref(raw_image: Image.Image, long_size: int = 512, scale_ratio: int = 1):
    # 获取原始图像的宽度和高度
    image_w, image_h = raw_image.size
    if image_w == image_h and image_w == 16:
        return raw_image

    # 计算长边和短边
    if image_w >= image_h:
        new_w = long_size
        new_h = int((long_size / image_w) * image_h)
    else:
        new_h = long_size
        new_w = int((long_size / image_h) * image_w)

    # 按新的宽高进行等比例缩放
    raw_image = raw_image.resize((new_w, new_h), resample=Image.LANCZOS)

    # 为了能让canny img进行scale
    scale_ratio = int(scale_ratio)
    target_w = new_w // (16 * scale_ratio) * (16 * scale_ratio)
    target_h = new_h // (16 * scale_ratio) * (16 * scale_ratio)

    # 计算裁剪的起始坐标以实现中心裁剪
    left = (new_w - target_w) // 2
    top = (new_h - target_h) // 2
    right = left + target_w
    bottom = top + target_h

    # 进行中心裁剪
    raw_image = raw_image.crop((left, top, right, bottom))

    # 转换为 RGB 模式
    raw_image = raw_image.convert("RGB")
    return raw_image


def resize_and_centercrop_image(image, target_height_ref1, target_width_ref1):
    target_height_ref1 = int(target_height_ref1 // 64 * 64)
    target_width_ref1 = int(target_width_ref1 // 64 * 64)
    h, w = image.shape[-2:]
    if h < target_height_ref1 or w < target_width_ref1:
        # 计算长宽比
        aspect_ratio = w / h
        if h < target_height_ref1:
            new_h = target_height_ref1
            new_w = new_h * aspect_ratio
            if new_w < target_width_ref1:
                new_w = target_width_ref1
                new_h = new_w / aspect_ratio
        else:
            new_w = target_width_ref1
            new_h = new_w / aspect_ratio
            if new_h < target_height_ref1:
                new_h = target_height_ref1
                new_w = new_h * aspect_ratio
    else:
        aspect_ratio = w / h
        tgt_aspect_ratio = target_width_ref1 / target_height_ref1
        if aspect_ratio > tgt_aspect_ratio:
            new_h = target_height_ref1
            new_w = new_h * aspect_ratio
        else:
            new_w = target_width_ref1
            new_h = new_w / aspect_ratio
    # 使用 TVF.resize 进行图像缩放
    image = TVF.resize(image, (math.ceil(new_h), math.ceil(new_w)))
    # 计算中心裁剪的参数
    top = (image.shape[-2] - target_height_ref1) // 2
    left = (image.shape[-1] - target_width_ref1) // 2
    # 使用 TVF.crop 进行中心裁剪
    image = TVF.crop(image, top, left, target_height_ref1, target_width_ref1)
    return image


class USOPipeline:
    def __init__(
        self,
        model_type: str,
        device: torch.device,
        offload: bool = False,
        only_lora: bool = False,
        lora_rank: int = 16,
        hf_download: bool = True,
    ):
        self.device = device
        self.offload = offload
        self.model_type = model_type

        self.clip = load_clip(self.device)
        self.t5 = load_t5(self.device, max_length=512)
        self.ae = load_ae(model_type, device="cpu" if offload else self.device)
        self.use_fp8 = "fp8" in model_type
        if only_lora:
            self.model = load_flow_model_only_lora(
                model_type,
                device="cpu" if offload else self.device,
                lora_rank=lora_rank,
                use_fp8=self.use_fp8,
                hf_download=hf_download,
            )
        else:
            self.model = load_flow_model(
                model_type, device="cpu" if offload else self.device
            )

    def load_ckpt(self, ckpt_path):
        if ckpt_path is not None:
            from safetensors.torch import load_file as load_sft

            print("Loading checkpoint to replace old keys")
            # load_sft doesn't support torch.device
            if ckpt_path.endswith("safetensors"):
                sd = load_sft(ckpt_path, device="cpu")
                missing, unexpected = self.model.load_state_dict(
                    sd, strict=False, assign=True
                )
            else:
                dit_state = torch.load(ckpt_path, map_location="cpu")
                sd = {}
                for k in dit_state.keys():
                    sd[k.replace("module.", "")] = dit_state[k]
                missing, unexpected = self.model.load_state_dict(
                    sd, strict=False, assign=True
                )
            self.model.to(str(self.device))
            print(f"missing keys: {missing}\n\n\n\n\nunexpected keys: {unexpected}")

    def set_lora(
        self,
        local_path: str = None,
        repo_id: str = None,
        name: str = None,
        lora_weight: int = 0.7,
    ):
        checkpoint = load_checkpoint(local_path, repo_id, name)
        self.update_model_with_lora(checkpoint, lora_weight)

    def set_lora_from_collection(
        self, lora_type: str = "realism", lora_weight: int = 0.7
    ):
        checkpoint = load_checkpoint(
            None, self.hf_lora_collection, self.lora_types_to_names[lora_type]
        )
        self.update_model_with_lora(checkpoint, lora_weight)

    def update_model_with_lora(self, checkpoint, lora_weight):
        rank = get_lora_rank(checkpoint)
        lora_attn_procs = {}

        for name, _ in self.model.attn_processors.items():
            lora_state_dict = {}
            for k in checkpoint.keys():
                if name in k:
                    lora_state_dict[k[len(name) + 1 :]] = checkpoint[k] * lora_weight

            if len(lora_state_dict):
                if name.startswith("single_blocks"):
                    lora_attn_procs[name] = SingleStreamBlockLoraProcessor(
                        dim=3072, rank=rank
                    )
                else:
                    lora_attn_procs[name] = DoubleStreamBlockLoraProcessor(
                        dim=3072, rank=rank
                    )
                lora_attn_procs[name].load_state_dict(lora_state_dict)
                lora_attn_procs[name].to(self.device)
            else:
                if name.startswith("single_blocks"):
                    lora_attn_procs[name] = SingleStreamBlockProcessor()
                else:
                    lora_attn_procs[name] = DoubleStreamBlockProcessor()

        self.model.set_attn_processor(lora_attn_procs)

    def __call__(
        self,
        prompt: str,
        width: int = 512,
        height: int = 512,
        guidance: float = 4,
        num_steps: int = 50,
        seed: int = 123456789,
        **kwargs,
    ):
        width = 16 * (width // 16)
        height = 16 * (height // 16)

        device_type = self.device if isinstance(self.device, str) else self.device.type
        with torch.autocast(
            enabled=self.use_fp8, device_type=device_type, dtype=torch.bfloat16
        ):
            return self.forward(
                prompt, width, height, guidance, num_steps, seed, **kwargs
            )

    @torch.inference_mode()
    def gradio_generate(
        self,
        prompt: str,
        image_prompt1: Image.Image,
        image_prompt2: Image.Image,
        image_prompt3: Image.Image,
        seed: int,
        width: int = 1024,
        height: int = 1024,
        guidance: float = 4,
        num_steps: int = 25,
        keep_size: bool = False,
        content_long_size: int = 512,
    ):
        ref_content_imgs = [image_prompt1]
        ref_content_imgs = [img for img in ref_content_imgs if isinstance(img, Image.Image)]
        ref_content_imgs = [preprocess_ref(img, content_long_size) for img in ref_content_imgs]

        ref_style_imgs = [image_prompt2, image_prompt3]
        ref_style_imgs = [img for img in ref_style_imgs if isinstance(img, Image.Image)]
        ref_style_imgs = [self.model.vision_encoder_processor(img, return_tensors="pt").to(self.device) for img in ref_style_imgs]

        seed = seed if seed != -1 else torch.randint(0, 10**8, (1,)).item()

        # whether keep input image size
        if keep_size and len(ref_content_imgs)>0:
            width, height = ref_content_imgs[0].size
            width, height = int(width * (1024 / content_long_size)), int(height * (1024 / content_long_size))
        img = self(
            prompt=prompt,
            width=width,
            height=height,
            guidance=guidance,
            num_steps=num_steps,
            seed=seed,
            ref_imgs=ref_content_imgs,
            siglip_inputs=ref_style_imgs,
        )

        filename = f"output/gradio/{seed}_{prompt[:20]}.png"
        os.makedirs(os.path.dirname(filename), exist_ok=True)
        exif_data = Image.Exif()
        exif_data[ExifTags.Base.Make] = "USO"
        exif_data[ExifTags.Base.Model] = self.model_type
        info = f"{prompt=}, {seed=}, {width=}, {height=}, {guidance=}, {num_steps=}"
        exif_data[ExifTags.Base.ImageDescription] = info
        img.save(filename, format="png", exif=exif_data)
        return img, filename

    @torch.inference_mode
    def forward(
        self,
        prompt: str,
        width: int,
        height: int,
        guidance: float,
        num_steps: int,
        seed: int,
        ref_imgs: list[Image.Image] | None = None,
        pe: Literal["d", "h", "w", "o"] = "d",
        siglip_inputs: list[Tensor] | None = None,
    ):
        x = get_noise(
            1, height, width, device=self.device, dtype=torch.bfloat16, seed=seed
        )
        timesteps = get_schedule(
            num_steps,
            (width // 8) * (height // 8) // (16 * 16),
            shift=True,
        )
        if self.offload:
            self.ae.encoder = self.ae.encoder.to(self.device)
        x_1_refs = [
            self.ae.encode(
                (TVF.to_tensor(ref_img) * 2.0 - 1.0)
                .unsqueeze(0)
                .to(self.device, torch.float32)
            ).to(torch.bfloat16)
            for ref_img in ref_imgs
        ]

        if self.offload:
            self.offload_model_to_cpu(self.ae.encoder)
            self.t5, self.clip = self.t5.to(self.device), self.clip.to(self.device)
        inp_cond = prepare_multi_ip(
            t5=self.t5,
            clip=self.clip,
            img=x,
            prompt=prompt,
            ref_imgs=x_1_refs,
            pe=pe,
        )

        if self.offload:
            self.offload_model_to_cpu(self.t5, self.clip)
            self.model = self.model.to(self.device)

        x = denoise(
            self.model,
            **inp_cond,
            timesteps=timesteps,
            guidance=guidance,
            siglip_inputs=siglip_inputs,
        )

        if self.offload:
            self.offload_model_to_cpu(self.model)
            self.ae.decoder.to(x.device)
        x = unpack(x.float(), height, width)
        x = self.ae.decode(x)
        self.offload_model_to_cpu(self.ae.decoder)

        x1 = x.clamp(-1, 1)
        x1 = rearrange(x1[-1], "c h w -> h w c")
        output_img = Image.fromarray((127.5 * (x1 + 1.0)).cpu().byte().numpy())
        return output_img

    def offload_model_to_cpu(self, *models):
        if not self.offload:
            return
        for model in models:
            model.cpu()
            torch.cuda.empty_cache()