nb / app.py
camparchimedes's picture
Update app.py
351252d verified
raw
history blame
10.3 kB
"""
Version: 4th_pruned_optimized_transcription_app.py
Description: webapp, transkribering (norsk), NbAiLab/nb-whisper-large, oppsummering, pdf-download.
"""
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import time
import os
import warnings
from pydub import AudioSegment
import torch
import torchaudio
from transformers import pipeline
from huggingface_hub import model_info
import spacy
import networkx as nx
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import pandas as pd
import numpy as np
import re
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import gradio as gr
from fpdf import FPDF
from PIL import Image
# Suppress warnings
warnings.filterwarnings("ignore")
# Convert m4a audio to wav format
def convert_to_wav(audio_file):
audio = AudioSegment.from_file(audio_file, format="m4a")
wav_file = "temp.wav"
audio.export(wav_file, format="wav")
return wav_file
# D3efine model
MODEL_NAME = "NbAiLab/nb-whisper-large"
lang = "no"
# Initialize device for torch
device = 0 if torch.cuda.is_available() else "cpu"
# Define pipeline config
pipe = pipeline(
task="automatic-speech-recognition",
model=MODEL_NAME,
chunk_length_s=30,
device=device,
)
#pipe.model.config.pad_token_id = pipe.tokenizer.get_decoder_prompt_ids(language=lang, task="transcribe")
# # Set eos_token_id and pad_token_id to different values
pipe.model.config.eos_token_id = 0
pipe.model.config.pad_token_id = 1
# OR
pipe.model.config.pad_token_id = pipe.tokenizer.get_decoder_prompt_ids(language=lang, task="transcribe")
assert pipe.model.config.eos_token_id != pipe.model.config.pad_token_id
"eos_token_id and pad_token_id must be different"
# Transcribe audio
def transcribe_audio(audio_file):
if audio_file.endswith(".m4a"):
audio_file = convert_to_wav(audio_file)
# Load using torchaudio
waveform, sample_rate = torchaudio.load(audio_file)
start_time = time.time()
text = pipe(waveform, sampling_rate=sample_rate)["text"]
output_time = time.time() - start_time
# Calculate audio duration (in seconds)
audio_duration = waveform.shape[1] / sample_rate
# Find audio duration@pipeline's internal method
#audio_duration = pipe.feature_extractor.sampling_rate * len(pipe.feature_extractor(audio_file)["input_features"][0]) / pipe.feature_extractor.sampling_rate
# Real-time Factor calculation
rtf = output_time / audio_duration
# Format of the result
result = (
f"Time taken: {output_time:.2f} seconds\n"
f"Audio duration: {audio_duration / 60:.2f} minutes ({audio_duration:.2f} seconds)\n"
f"Real-time Factor (RTF): {rtf:.2f}\n"
f"Number of words: {len(text.split())}\n\n"
"Real-time Factor (RTF) is a measure used to evaluate the speed of speech recognition systems. "
"It is the ratio of transcription time to the duration of the audio.\n\n"
"An RTF of less than 1 means the transcription process is faster than real-time (expected)."
)
return text, result
# Clean and preprocess text for summarization
def clean_text(text):
text = re.sub(r'https?:\/\/.*[\r\n]*', '', text)
text = re.sub(r'[^\w\s]', '', text)
text = re.sub(r'\s+', ' ', text).strip()
return text
nlp = spacy.blank("nb") # 'nb' is code for Norwegian Bokmål
spacy_stop_words = spacy.lang.nb.stop_words.STOP_WORDS
def preprocess_text(text):
# Process the text with SpaCy
doc = nlp(text)
# Use SpaCy's stop words directly
stop_words = spacy_stop_words
# Filter out stop words
words = [token.text for token in doc if token.text.lower() not in stop_words]
return ' '.join(words)
# Summarize text using the T5 model
def summarize_text(text):
preprocessed_text = preprocess_text(text)
inputs = summarization_tokenizer(preprocessed_text, max_length=1024, return_tensors="pt", truncation=True)
inputs = inputs.to(device)
summary_ids = summarization_model.generate(inputs.input_ids, num_beams=5, max_length=150, early_stopping=True)
return summarization_tokenizer.decode(summary_ids[0], skip_special_tokens=True)
# Build similarity matrix for graph-based summary
def build_similarity_matrix(sentences, stop_words):
similarity_matrix = nx.Graph()
for i, tokens_a in enumerate(sentences):
for j, tokens_b in enumerate(sentences):
if i != j:
common_words = set(tokens_a) & set(tokens_b)
similarity_matrix.add_edge(i, j, weight=len(common_words))
return similarity_matrix
# Graph-based summarization
def graph_based_summary(text, num_paragraphs=3):
doc = nlp(text)
sentences = [sent.text for sent in doc.sents]
if len(sentences) < num_paragraphs:
return sentences
sentence_tokens = [nlp(sent) for sent in sentences]
stop_words = spacy_stop_words
filtered_tokens = [[token.text for token in tokens if token.text.lower() not in stop_words] for tokens in sentence_tokens]
similarity_matrix = build_similarity_matrix(filtered_tokens, stop_words)
scores = nx.pagerank(similarity_matrix)
ranked_sentences = sorted(((scores[i], sent) for i, sent in enumerate(sentences)), reverse=True)
return ' '.join([sent for _, sent in ranked_sentences[:num_paragraphs]])
# LexRank summarization
def lex_rank_summary(text, num_paragraphs=3, threshold=0.1):
doc = nlp(text)
sentences = [sent.text for sent in doc.sents]
if len(sentences) < num_paragraphs:
return sentences
stop_words = spacy_stop_words
vectorizer = TfidfVectorizer(stop_words=list(stop_words))
X = vectorizer.fit_transform(sentences)
similarity_matrix = cosine_similarity(X, X)
# Apply threshold to the similarity matrix
similarity_matrix[similarity_matrix < threshold] = 0
nx_graph = nx.from_numpy_array(similarity_matrix)
scores = nx.pagerank(nx_graph)
ranked_sentences = sorted(((scores[i], s) for i, s in enumerate(sentences)), reverse=True)
return ' '.join([ranked_sentences[i][1] for i in range(num_paragraphs)])
# TextRank summarization
def text_rank_summary(text, num_paragraphs=3):
doc = nlp(text)
sentences = [sent.text for sent in doc.sents]
if len(sentences) < num_paragraphs:
return sentences
stop_words = spacy_stop_words
vectorizer = TfidfVectorizer(stop_words=list(stop_words))
X = vectorizer.fit_transform(sentences)
similarity_matrix = cosine_similarity(X, X)
nx_graph = nx.from_numpy_array(similarity_matrix)
scores = nx.pagerank(nx_graph)
ranked_sentences = sorted(((scores[i], s) for i, s in enumerate(sentences)), reverse=True)
return ' '.join([ranked_sentences[i][1] for i in range(num_paragraphs)])
# Save text and summary to PDF
def save_to_pdf(text, summary):
pdf = FPDF()
pdf.add_page()
pdf.set_font("Arial", size=12)
if text:
pdf.multi_cell(0, 10, "Text:\n" + text)
pdf.ln(10) # Paragraph space
if summary:
pdf.multi_cell(0, 10, "Summary:\n" + summary)
pdf_output_path = "transcription.pdf"
pdf.output(pdf_output_path)
return pdf_output_path
def _return_img_html_embed(img_url):
HTML_str = (
f'<center><img src="{img_url}" alt="Imagerine" style="width:100%; height:auto;"></center>'
)
return HTML_str
# Gradio Interface
def display_image():
img_url = "https://huggingface.co/spaces/camparchimedes/transcription_app/blob/main/picture.png"
html_embed_str = _return_img_html_embed(img_url)
return html_embed_str
iface = gr.Blocks()
with iface:
gr.HTML(display_image())
gr.Markdown("# Vi har nå muligheten til å oversette lydfiler til norsk skrift.")
with gr.Tabs():
with gr.TabItem("Transcription"):
audio_input = gr.Audio(type="filepath")
text_output = gr.Textbox(label="Text")
result_output = gr.Textbox(label="Time taken and Number of words")
transcribe_button = gr.Button("Transcribe")
transcribe_button.click(fn=transcribe_audio, inputs=[audio_input], outputs=[text_output, result_output])
with gr.TabItem("Summary | Graph-based"):
summary_output = gr.Textbox(label="Summary | Graph-based")
summarize_button = gr.Button("Summarize")
summarize_button.click(fn=lambda text: graph_based_summary(text), inputs=[text_output], outputs=[summary_output])
with gr.TabItem("Summary | LexRank"):
summary_output = gr.Textbox(label="Summary | LexRank")
summarize_button = gr.Button("Summarize")
summarize_button.click(fn=lambda text: lex_rank_summary(text), inputs=[text_output], outputs=[summary_output])
with gr.TabItem("Summary | TextRank"):
summary_output = gr.Textbox(label="Summary | TextRank")
summarize_button = gr.Button("Summarize")
summarize_button.click(fn=lambda text: text_rank_summary(text), inputs=[text_output], outputs=[summary_output])
with gr.TabItem("Download PDF"):
pdf_text_only = gr.Button("Download PDF with Text Only")
pdf_summary_only = gr.Button("Download PDF with Summary Only")
pdf_both = gr.Button("Download PDF with Both")
pdf_output = gr.File(label="Download PDF")
pdf_text_only.click(fn=lambda text: save_to_pdf(text, ""), inputs=[text_output], outputs=[pdf_output])
pdf_summary_only.click(fn=lambda summary: save_to_pdf("", summary), inputs=[summary_output], outputs=[pdf_output])
pdf_both.click(fn=lambda text, summary: save_to_pdf(text, summary), inputs=[text_output, summary_output], outputs=[pdf_output])
iface.launch(share=True, debug=True)