File size: 10,263 Bytes
0ca8cef
351252d
0ca8cef
351252d
0ca8cef
 
351252d
 
 
 
 
 
 
 
 
 
 
 
3d3ff49
d4b107b
9e722fb
8c6ad91
 
351252d
b992645
0201e30
1137662
8c6ad91
 
 
 
 
 
 
 
 
 
d353554
8c6ad91
 
d353554
8c6ad91
440d6b7
 
 
 
 
47661bd
329c8dd
351252d
 
0ca8cef
 
351252d
0ca8cef
351252d
 
0ca8cef
 
 
 
 
 
 
351252d
 
 
 
 
0ca8cef
351252d
 
ca866cd
351252d
 
 
 
 
 
9769005
440d6b7
 
b3d3679
351252d
 
 
b98f4ad
d2774a4
0ca8cef
 
3698f30
 
351252d
 
 
b3d3679
3698f30
b992645
351252d
 
 
 
 
b992645
 
 
 
 
 
 
 
 
 
351252d
b992645
351252d
b992645
 
0ac786e
f4108af
0ca8cef
8c6ad91
9e722fb
8c6ad91
 
 
9e722fb
 
b992645
 
 
9e722fb
b992645
 
 
 
 
 
8c6ad91
badcd8d
8c6ad91
55eafca
9e722fb
8c6ad91
9e722fb
 
8c6ad91
d2774a4
8c6ad91
9e722fb
 
 
 
 
 
 
 
 
8c6ad91
9e722fb
b992645
 
9e722fb
 
8c6ad91
b992645
 
 
9e722fb
d262ec1
9e722fb
 
8c6ad91
d4b107b
8c6ad91
f7e87b9
b992645
 
9e722fb
 
8c6ad91
b992645
9e722fb
 
 
f7e87b9
8c6ad91
 
d4b107b
f7e87b9
9e722fb
8c6ad91
f7e87b9
8c6ad91
9e722fb
b992645
 
9e722fb
 
f7e87b9
b992645
9e722fb
 
 
2d9e081
8c6ad91
 
 
 
9e722fb
b992645
8c6ad91
0ac786e
440d6b7
8c6ad91
440d6b7
d2774a4
0ac786e
8c6ad91
d2774a4
8c6ad91
d2774a4
b98f4ad
 
d2774a4
9e722fb
440d6b7
 
 
8b1327d
 
351252d
8b1327d
 
 
8c6ad91
8b1327d
b992645
8b1327d
 
 
8ec53db
 
 
8b1327d
2920f00
d2774a4
7735671
 
 
8c6ad91
7735671
 
 
8c6ad91
8ec53db
8c6ad91
9e722fb
7735671
 
8c6ad91
8ec53db
8c6ad91
9e722fb
 
 
8c6ad91
9e722fb
8c6ad91
9e722fb
 
 
8c6ad91
9e722fb
7735671
8c6ad91
7735671
 
 
8c6ad91
7735671
8c6ad91
 
 
8ec53db
9e722fb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
"""
Version: 4th_pruned_optimized_transcription_app.py

Description: webapp, transkribering (norsk), NbAiLab/nb-whisper-large, oppsummering, pdf-download.
"""

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import time
import os
import warnings
from pydub import AudioSegment
import torch
import torchaudio
from transformers import pipeline
from huggingface_hub import model_info
import spacy
import networkx as nx
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import pandas as pd
import numpy as np
import re
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import gradio as gr
from fpdf import FPDF
from PIL import Image

# Suppress warnings
warnings.filterwarnings("ignore")

# Convert m4a audio to wav format
def convert_to_wav(audio_file):
    audio = AudioSegment.from_file(audio_file, format="m4a")
    wav_file = "temp.wav"
    audio.export(wav_file, format="wav")
    return wav_file


# D3efine model
MODEL_NAME = "NbAiLab/nb-whisper-large"
lang = "no"

# Initialize device for torch
device = 0 if torch.cuda.is_available() else "cpu"

# Define pipeline config
pipe = pipeline(
    task="automatic-speech-recognition",
    model=MODEL_NAME,
    chunk_length_s=30,
    device=device,
)

#pipe.model.config.pad_token_id = pipe.tokenizer.get_decoder_prompt_ids(language=lang, task="transcribe")

# # Set eos_token_id and pad_token_id to different values
pipe.model.config.eos_token_id = 0
pipe.model.config.pad_token_id = 1

# OR
pipe.model.config.pad_token_id = pipe.tokenizer.get_decoder_prompt_ids(language=lang, task="transcribe")


assert pipe.model.config.eos_token_id != pipe.model.config.pad_token_id
"eos_token_id and pad_token_id must be different"


# Transcribe audio
def transcribe_audio(audio_file):
    if audio_file.endswith(".m4a"):
        audio_file = convert_to_wav(audio_file)

    # Load using torchaudio
    waveform, sample_rate = torchaudio.load(audio_file)

    start_time = time.time()






    text = pipe(waveform, sampling_rate=sample_rate)["text"]


    output_time = time.time() - start_time

    # Calculate audio duration (in seconds)
    audio_duration = waveform.shape[1] / sample_rate

    # Find audio duration@pipeline's internal method
    #audio_duration = pipe.feature_extractor.sampling_rate * len(pipe.feature_extractor(audio_file)["input_features"][0]) / pipe.feature_extractor.sampling_rate

    # Real-time Factor calculation
    rtf = output_time / audio_duration

    # Format of the result
    result = (
        f"Time taken: {output_time:.2f} seconds\n"
        f"Audio duration: {audio_duration / 60:.2f} minutes ({audio_duration:.2f} seconds)\n"
        f"Real-time Factor (RTF): {rtf:.2f}\n"
        f"Number of words: {len(text.split())}\n\n"
        "Real-time Factor (RTF) is a measure used to evaluate the speed of speech recognition systems. "
        "It is the ratio of transcription time to the duration of the audio.\n\n"
        "An RTF of less than 1 means the transcription process is faster than real-time (expected)."
    )

    return text, result


# Clean and preprocess text for summarization
def clean_text(text):
    text = re.sub(r'https?:\/\/.*[\r\n]*', '', text)
    text = re.sub(r'[^\w\s]', '', text)
    text = re.sub(r'\s+', ' ', text).strip()
    return text

nlp = spacy.blank("nb")  # 'nb' is code for Norwegian Bokmål
spacy_stop_words = spacy.lang.nb.stop_words.STOP_WORDS

def preprocess_text(text):
    # Process the text with SpaCy
    doc = nlp(text)
    # Use SpaCy's stop words directly
    stop_words = spacy_stop_words
    # Filter out stop words
    words = [token.text for token in doc if token.text.lower() not in stop_words]
    return ' '.join(words)

# Summarize text using the T5 model
def summarize_text(text):
    preprocessed_text = preprocess_text(text)
    inputs = summarization_tokenizer(preprocessed_text, max_length=1024, return_tensors="pt", truncation=True)
    inputs = inputs.to(device)
    summary_ids = summarization_model.generate(inputs.input_ids, num_beams=5, max_length=150, early_stopping=True)
    return summarization_tokenizer.decode(summary_ids[0], skip_special_tokens=True)

# Build similarity matrix for graph-based summary
def build_similarity_matrix(sentences, stop_words):
    similarity_matrix = nx.Graph()
    for i, tokens_a in enumerate(sentences):
        for j, tokens_b in enumerate(sentences):
            if i != j:
                common_words = set(tokens_a) & set(tokens_b)
                similarity_matrix.add_edge(i, j, weight=len(common_words))
    return similarity_matrix

# Graph-based summarization
def graph_based_summary(text, num_paragraphs=3):
    doc = nlp(text)
    sentences = [sent.text for sent in doc.sents]
    if len(sentences) < num_paragraphs:
        return sentences

    sentence_tokens = [nlp(sent) for sent in sentences]
    stop_words = spacy_stop_words
    filtered_tokens = [[token.text for token in tokens if token.text.lower() not in stop_words] for tokens in sentence_tokens]
    similarity_matrix = build_similarity_matrix(filtered_tokens, stop_words)

    scores = nx.pagerank(similarity_matrix)
    ranked_sentences = sorted(((scores[i], sent) for i, sent in enumerate(sentences)), reverse=True)
    return ' '.join([sent for _, sent in ranked_sentences[:num_paragraphs]])

# LexRank summarization
def lex_rank_summary(text, num_paragraphs=3, threshold=0.1):
    doc = nlp(text)
    sentences = [sent.text for sent in doc.sents]
    if len(sentences) < num_paragraphs:
        return sentences

    stop_words = spacy_stop_words
    vectorizer = TfidfVectorizer(stop_words=list(stop_words))
    X = vectorizer.fit_transform(sentences)
    similarity_matrix = cosine_similarity(X, X)

    # Apply threshold to the similarity matrix
    similarity_matrix[similarity_matrix < threshold] = 0
    nx_graph = nx.from_numpy_array(similarity_matrix)
    scores = nx.pagerank(nx_graph)
    ranked_sentences = sorted(((scores[i], s) for i, s in enumerate(sentences)), reverse=True)
    return ' '.join([ranked_sentences[i][1] for i in range(num_paragraphs)])

# TextRank summarization
def text_rank_summary(text, num_paragraphs=3):
    doc = nlp(text)
    sentences = [sent.text for sent in doc.sents]
    if len(sentences) < num_paragraphs:
        return sentences

    stop_words = spacy_stop_words
    vectorizer = TfidfVectorizer(stop_words=list(stop_words))
    X = vectorizer.fit_transform(sentences)
    similarity_matrix = cosine_similarity(X, X)

    nx_graph = nx.from_numpy_array(similarity_matrix)
    scores = nx.pagerank(nx_graph)
    ranked_sentences = sorted(((scores[i], s) for i, s in enumerate(sentences)), reverse=True)
    return ' '.join([ranked_sentences[i][1] for i in range(num_paragraphs)])


# Save text and summary to PDF
def save_to_pdf(text, summary):
    pdf = FPDF()
    pdf.add_page()
    pdf.set_font("Arial", size=12)

    if text:
        pdf.multi_cell(0, 10, "Text:\n" + text)

    pdf.ln(10)  # Paragraph space

    if summary:
        pdf.multi_cell(0, 10, "Summary:\n" + summary)

    pdf_output_path = "transcription.pdf"
    pdf.output(pdf_output_path)
    return pdf_output_path

def _return_img_html_embed(img_url):
    HTML_str = (
        f'<center><img src="{img_url}" alt="Imagerine" style="width:100%; height:auto;"></center>'
    )
    return HTML_str

# Gradio Interface
def display_image():
    img_url = "https://huggingface.co/spaces/camparchimedes/transcription_app/blob/main/picture.png"
    html_embed_str = _return_img_html_embed(img_url)
    return html_embed_str

iface = gr.Blocks()

with iface:
    gr.HTML(display_image())
    gr.Markdown("# Vi har nå muligheten til å oversette lydfiler til norsk skrift.")

    with gr.Tabs():
        with gr.TabItem("Transcription"):
            audio_input = gr.Audio(type="filepath")
            text_output = gr.Textbox(label="Text")
            result_output = gr.Textbox(label="Time taken and Number of words")
            transcribe_button = gr.Button("Transcribe")

            transcribe_button.click(fn=transcribe_audio, inputs=[audio_input], outputs=[text_output, result_output])

        with gr.TabItem("Summary | Graph-based"):
            summary_output = gr.Textbox(label="Summary | Graph-based")
            summarize_button = gr.Button("Summarize")

            summarize_button.click(fn=lambda text: graph_based_summary(text), inputs=[text_output], outputs=[summary_output])

        with gr.TabItem("Summary | LexRank"):
            summary_output = gr.Textbox(label="Summary | LexRank")
            summarize_button = gr.Button("Summarize")

            summarize_button.click(fn=lambda text: lex_rank_summary(text), inputs=[text_output], outputs=[summary_output])

        with gr.TabItem("Summary | TextRank"):
            summary_output = gr.Textbox(label="Summary | TextRank")
            summarize_button = gr.Button("Summarize")

            summarize_button.click(fn=lambda text: text_rank_summary(text), inputs=[text_output], outputs=[summary_output])

        with gr.TabItem("Download PDF"):
            pdf_text_only = gr.Button("Download PDF with Text Only")
            pdf_summary_only = gr.Button("Download PDF with Summary Only")
            pdf_both = gr.Button("Download PDF with Both")

            pdf_output = gr.File(label="Download PDF")

            pdf_text_only.click(fn=lambda text: save_to_pdf(text, ""), inputs=[text_output], outputs=[pdf_output])
            pdf_summary_only.click(fn=lambda summary: save_to_pdf("", summary), inputs=[summary_output], outputs=[pdf_output])
            pdf_both.click(fn=lambda text, summary: save_to_pdf(text, summary), inputs=[text_output, summary_output], outputs=[pdf_output])

iface.launch(share=True, debug=True)