nb / app.py
camparchimedes's picture
Update app.py
208a5cd verified
raw
history blame
14.4 kB
### -----------------------------------------------------------------------
### (FULL, Revised) version_1.07ALPHA_app.py
### -----------------------------------------------------------------------
# -------------------------------------------------------------------------
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# -------------------------------------------------------------------------
import spaces
import gradio as gr
from PIL import Image
#from pydub import AudioSegment
#from scipy.io import wavfile
import os
import re
import time
import warnings
#import datetime
#import pandas as pd
#import csv
import subprocess
from pathlib import Path
import tempfile
from fpdf import FPDF
import psutil
from gpuinfo import GPUInfo
import numpy as np
import torch
import torchaudio
import torchaudio.transforms as transforms
from transformers import pipeline, AutoModel
import spacy
import networkx as nx
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
warnings.filterwarnings("ignore")
# ------------header section------------
HEADER_INFO = """
# WEB APP ✨| Norwegian WHISPER Model
Switch Work [Transkribering av lydfiler til norsk skrift]
""".strip()
LOGO = "https://cdn-lfs-us-1.huggingface.co/repos/fe/3b/fe3bd7c8beece8b087fddcc2278295e7f56c794c8dcf728189f4af8bddc585e1/5112f67899d65e9797a7a60d05f983cf2ceefbe2f7cba74eeca93a4e7061becc?response-content-disposition=inline%3B+filename*%3DUTF-8%27%27logo.png%3B+filename%3D%22logo.png%22%3B&response-content-type=image%2Fpng&Expires=1724881270&Policy=eyJTdGF0ZW1lbnQiOlt7IkNvbmRpdGlvbiI6eyJEYXRlTGVzc1RoYW4iOnsiQVdTOkVwb2NoVGltZSI6MTcyNDg4MTI3MH19LCJSZXNvdXJjZSI6Imh0dHBzOi8vY2RuLWxmcy11cy0xLmh1Z2dpbmdmYWNlLmNvL3JlcG9zL2ZlLzNiL2ZlM2JkN2M4YmVlY2U4YjA4N2ZkZGNjMjI3ODI5NWU3ZjU2Yzc5NGM4ZGNmNzI4MTg5ZjRhZjhiZGRjNTg1ZTEvNTExMmY2Nzg5OWQ2NWU5Nzk3YTdhNjBkMDVmOTgzY2YyY2VlZmJlMmY3Y2JhNzRlZWNhOTNhNGU3MDYxYmVjYz9yZXNwb25zZS1jb250ZW50LWRpc3Bvc2l0aW9uPSomcmVzcG9uc2UtY29udGVudC10eXBlPSoifV19&Signature=ipo8wTjtC7R0QHbo%7Et9Q5CTaI3cZKxM0beajqlApfm5fh7%7EW-FULu1-ISL5bkowBSw9m5RdGoyOqj336OSS5fPD%7EnzYNmAMd3T5bx2-KfCDh6jz0HVECt8S7HeIu%7El2TetxrzL2tdHw4Np4Zpa8JKOnNnje24fF0Nr-xUS2dvPJf54rIL70-iWVXXhw8owxt0%7E1CJsUHC9oibp9B4mZcyWvvRldhDopiQBYELusZdTW3qvtTBK083WP3gHQxadQp8UDVTPZ0g3i112G2NfFJB%7Epa70XeN8m3E6ORx6pVH%7EW6IzjvmapWSF-tmXH-26wYG8aof%7E1U7enbR1w2QBTS-g__&Key-Pair-Id=K24J24Z295AEI9"
SIDEBAR_INFO = f"""
<div align="center">
<img src="{LOGO}" style="width: 100%; height: auto;"/>
</div>
"""
# ------------transcribe section------------
pipe = pipeline("automatic-speech-recognition", model="NbAiLab/nb-whisper-large", chunk_length_s=30, generate_kwargs={'task': 'transcribe', 'language': 'no'})
@spaces.GPU()
def transcribe(microphone, file_upload, batch_size=15):
warn_output = ""
if (microphone is not None) and (file_upload is not None):
warn_output = (
"WARNING: You've uploaded an audio file and used the microphone. "
"The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
)
elif (microphone is None) and (file_upload is None):
return "ERROR: You have to either use the microphone or upload an audio file"
file = microphone if microphone is not None else file_upload
start_time = time.time()
text = pipe(file, batch_size=batch_size, return_timestamps=False)["text"]
end_time = time.time()
output_time = end_time - start_time
word_count = len(text.split())
# --GPU metrics
memory = psutil.virtual_memory()
gpu_utilization, gpu_memory = GPUInfo.gpu_usage()
gpu_utilization = gpu_utilization[0] if len(gpu_utilization) > 0 else 0
gpu_memory = gpu_memory[0] if len(gpu_memory) > 0 else 0
# --CPU metric
cpu_usage = psutil.cpu_percent(interval=1)
# --system info string
system_info = f"""
*Memory: {memory.total / (1024 * 1024 * 1024):.2f}GB, used: {memory.percent}%, available: {memory.available / (1024 * 1024 * 1024):.2f}GB.*
*Processing time: {output_time:.2f} seconds.*
*Number of words: {word_count}*
*GPU Utilization: {gpu_utilization}%, GPU Memory: {gpu_memory}*
*CPU Usage: {cpu_usage}%*
"""
return warn_output + text.strip(), system_info
# ------------summary section------------
# ------------for app integration later------------
nlp = spacy.blank("nb") # codename 'nb' = Norwegian Bokmål
nlp.add_pipe('sentencizer')
spacy_stop_words = spacy.lang.nb.stop_words.STOP_WORDS
summarization_model = AutoModel.from_pretrained("NbAiLab/nb-bert-large")
# pipe = pipeline("fill-mask", model="NbAiLab/nb-bert-large")
@spaces.GPU()
def clean_text(text):
text = re.sub(r'https?:\/\/.*[\r\n]*', '', text)
text = re.sub(r'[^\w\s]', '', text)
text = re.sub(r'\s+', ' ', text).strip()
return text
@spaces.GPU()
def preprocess_text(text, file_upload):
if (text is not None) and (file_upload is None):
doc = nlp(text)
elif (text is None) and (file_upload is not None):
doc = nlp(file_upload)
stop_words = spacy_stop_words
words = [token.text for token in doc if token.text.lower() not in stop_words]
return ' '.join(words)
@spaces.GPU()
def summarize_text(text, file_upload):
#
# ----add same if/elif logic as above here----
#
preprocessed_text = preprocess_text(text)
inputs = summarization_model(preprocessed_text, max_length=1024, return_tensors="pt", truncation=True)
inputs = inputs.to(device)
summary_ids = summarization_model.generate(inputs.input_ids, num_beams=5, max_length=150, early_stopping=True)
return summarization_model.decode(summary_ids[0], skip_special_tokens=True)
@spaces.GPU()
def build_similarity_matrix(sentences):
similarity_matrix = nx.Graph()
for i, tokens_a in enumerate(sentences):
for j, tokens_b in enumerate(sentences):
if i != j:
common_words = set(tokens_a) & set(tokens_b)
similarity_matrix.add_edge(i, j, weight=len(common_words))
return similarity_matrix
# PageRank
@spaces.GPU()
def graph_based_summary(text, file_upload, num_paragraphs=3):
#
# ----add same if/elif logic as above here----
#
sentences = [sent.text for sent in doc.sents]
if len(sentences) < num_paragraphs:
return ' '.join(sentences)
sentence_tokens = [nlp(sent) for sent in sentences]
stop_words = spacy_stop_words
filtered_tokens = [[token.text for token in tokens if token.text.lower() not in stop_words] for tokens in sentence_tokens]
similarity_matrix = build_similarity_matrix(filtered_tokens)
scores = nx.pagerank(similarity_matrix)
ranked_sentences = sorted(((scores[i], sent) for i, sent in enumerate(sentences)), reverse=True)
return ' '.join([sent for _, sent in ranked_sentences[:num_paragraphs]])
@spaces.GPU()
def lex_rank_summary(text, file_upload, num_paragraphs=3, threshold=0.1):
if (text is not None) and (file_upload is None):
doc = nlp(text)
elif (text is None) and (file_upload is not None):
doc = nlp(file_upload)
sentences = [sent.text for sent in doc.sents]
if len(sentences) < num_paragraphs:
return ' '.join(sentences)
stop_words = spacy_stop_words
vectorizer = TfidfVectorizer(stop_words=list(stop_words))
X = vectorizer.fit_transform(sentences)
similarity_matrix = cosine_similarity(X, X)
# Apply threshold@similarity matrix
similarity_matrix[similarity_matrix < threshold] = 0
nx_graph = nx.from_numpy_array(similarity_matrix)
scores = nx.pagerank(nx_graph)
ranked_sentences = sorted(((scores[i], s) for i, s in enumerate(sentences)), reverse=True)
return ' '.join([ranked_sentences[i][1] for i in range(num_paragraphs)])
@spaces.GPU()
def text_rank_summary(text, file_upload, num_paragraphs=3):
if (text is not None) and (file_upload is not None):
doc = nlp(text)
elif (text is None) and (file_upload is not None):
doc = nlp(file_upload)
sentences = [sent.text for sent in doc.sents]
if len(sentences) < num_paragraphs:
return ' '.join(sentences)
stop_words = spacy_stop_words
vectorizer = TfidfVectorizer(stop_words=list(stop_words))
X = vectorizer.fit_transform(sentences)
similarity_matrix = cosine_similarity(X, X)
nx_graph = nx.from_numpy_array(similarity_matrix)
scores = nx.pagerank(nx_graph)
ranked_sentences = sorted(((scores[i], s) for i, s in enumerate(sentences)), reverse=True)
return ' '.join([ranked_sentences[i][1] for i in range(num_paragraphs)])
def save_to_pdf(text, summary):
pdf = FPDF()
pdf.add_page()
pdf.set_font("Arial", size=12)
#
# ----add same if/elif logic as above here----
#
if text:
pdf.multi_cell(0, 10, "Text:\n" + text)
pdf.ln(10) # Paragraph metric
if summary:
pdf.multi_cell(0, 10, "Summary:\n" + summary)
pdf_output_path = "transcription_.pdf"
pdf.output(pdf_output_path)
return pdf_output_path
iface = gr.Blocks()
with iface:
gr.HTML(SIDEBAR_INFO)
gr.Markdown(HEADER_INFO)
with gr.Row():
gr.Markdown('''
##### Here you will get transcription output
##### ''')
microphone = gr.Audio(sources="microphone", type="filepath")
upload = gr.Audio(sources="upload", type="filepath")
transcribe_btn = gr.Button("Transcribe Interview")
text_output = gr.Textbox()
system_info = gr.Textbox(label="System Info")
# --basic syntax!: positional argument ")" follows keyword argument, e.g ..., system_info :P
transcribe_btn.click(fn=transcribe_audio,[microphone, upload], outputs=[text_output, system_info])
with gr.Tabs():
with gr.TabItem("Summary | PageRank"):
text_input_graph = gr.Textbox(label="Input Text", placeholder="txt2summarize")
summary_output_graph = gr.Textbox(label="PageRank | token-based similarity")
gr.Markdown("""
**token-based**: similarity matrix edge weights representing token overlap/
ranked by their centrality in the graph (good with dense inter-sentence relationships)
""")
gr.Markdown("""
*Bjørn*: **gir sammendrag som fanger opp de mest relevante setninger i teksten**
""")
summarize_transcribed_button_graph = gr.Button("Summary of Transcribed Text, Click Here")
summarize_transcribed_button_graph.click(fn=lambda text: graph_based_summary(text), inputs=[transcribed_text], outputs=[summary_output_graph])
summarize_uploaded_button_graph = gr.Button("Upload Text to Summarize, Click Here")
summarize_uploaded_button_graph.click(fn=graph_based_summary(file_upload), inputs=[text_input_graph], outputs=[summary_output_graph])
with gr.TabItem("Summary | LexRank"):
text_output = gr.Textbox(label="Transcription Output")
text_input_lex = gr.Textbox(label="Input Text", placeholder="txt2summarize")
summary_output_lex = gr.Textbox(label="LexRank | cosine similarity")
gr.Markdown("""
**semantic**: TF-IDF vectorization@cosine similarity matrix, ranked by eigenvector centrality.
(good for sparse graph structures with thresholding)
""")
gr.Markdown("""
*Bjørn*: **gir sammendrag som best fanger opp betydningen av hele teksten**
""")
summarize_transcribed_button_lex = gr.Button("Summary of Transcribed Text, Click Here")
summarize_transcribed_button_lex.click(fn=lambda text: lex_rank_summary(text), inputs=[transcribed_text], outputs=[summary_output_lex])
summarize_uploaded_button_lex = gr.Button("Upload Text to Summarize, Click Here")
summarize_uploaded_button_lex.click(fn=lex_rank_summary(file_upload), inputs=[text_input_lex], outputs=[summary_output_lex])
with gr.TabItem("Summary | TextRank"):
text_input_text_rank = gr.Textbox(label="Input Text", placeholder="txt2summarize")
summary_output_text_rank = gr.Textbox(label="TextRank | lexical similarity")
gr.Markdown("""
**sentence**: graph with weighted edges based on lexical similarity. (i.e" "sentence similarity"word overlap)/sentence similarity
""")
gr.Markdown("""
*Bjørn*: **sammendrag basert på i de setningene som ligner mest på hverandre fra teksten**
""")
summarize_transcribed_button_text_rank = gr.Button("Summary of Transcribed Text, Click Here")
summarize_transcribed_button_text_rank.click(fn=lambda text: text_rank_summary(text), inputs=[transcribed_text], outputs=[summary_output_text_rank])
summarize_uploaded_button_text_rank = gr.Button("Upload Text to Summarize, Click Here")
summarize_uploaded_button_text_rank.click(fn=text_rank_summary(file_upload), inputs=[text_input_text_rank], outputs=[summary_output_text_rank])
with gr.TabItem("Download PDF"):
pdf_text_only = gr.Button("Download PDF with Transcribed Text Only")
pdf_summary_only = gr.Button("Download PDF with Summary-of-Transcribed-Text Only")
pdf_both = gr.Button("Download PDF with Both")
pdf_output = gr.File(label="Download PDF")
pdf_text_only.click(fn=lambda text: save_to_pdf(text, ""), inputs=[transcribed_text], outputs=[pdf_output])
pdf_summary_only.click(fn=lambda summary: save_to_pdf("", summary), inputs=[summary_output_graph, summary_output_lex, summary_output_text_rank], outputs=[pdf_output]) # Includes all summary outputs
pdf_both.click(fn=lambda text, summary: save_to_pdf(text, summary), inputs=[transcribed_text, summary_output_graph], outputs=[pdf_output])