File size: 14,430 Bytes
abc89d1
 
 
 
 
351252d
 
 
 
 
 
 
 
 
 
 
abc89d1
 
1de6e28
dbca570
 
abc89d1
c5571fa
f0c35fe
d4b107b
cf8326e
85002a1
ad6d7c2
 
abc89d1
 
85002a1
 
c5571fa
dbca570
2f03bd6
ad6d7c2
dbca570
abc89d1
cf8326e
8c6ad91
501c4cf
5c44de8
cf8326e
2be6ffe
cf8326e
1137662
8c6ad91
 
 
ad6d7c2
dbca570
1de6e28
85002a1
 
 
 
6a801d6
85002a1
ad6d7c2
 
 
 
b6f831c
abc89d1
6898666
9e87cc4
85002a1
1de6e28
abc89d1
 
 
 
 
 
 
 
 
 
 
 
501c4cf
d43021e
abc89d1
b992645
32f88c0
 
 
361f8d0
5c44de8
85002a1
 
 
 
361f8d0
5c44de8
361f8d0
 
4a5b260
85002a1
 
071df52
 
361f8d0
 
 
071df52
abc89d1
 
 
 
 
 
 
 
 
 
 
 
6ec642d
1de6e28
9e722fb
8c6ad91
 
 
9e722fb
 
abc89d1
 
b992645
abc89d1
 
 
 
 
6ec642d
b992645
 
8c6ad91
badcd8d
1de6e28
abc89d1
49113b6
 
 
9e722fb
5b098b4
9e722fb
 
5b098b4
abc89d1
6ec642d
abc89d1
9e722fb
 
 
 
 
 
 
2fb8a5f
abc89d1
6ec642d
abc89d1
49113b6
 
 
b992645
9e722fb
abc89d1
8c6ad91
b992645
 
 
abc89d1
d262ec1
9e722fb
 
8c6ad91
d4b107b
6ec642d
abc89d1
 
 
 
 
 
 
 
b992645
9e722fb
abc89d1
8c6ad91
b992645
9e722fb
 
 
f7e87b9
7ef26c1
8c6ad91
d4b107b
f7e87b9
9e722fb
8c6ad91
f7e87b9
6ec642d
abc89d1
 
49113b6
abc89d1
 
 
 
 
b992645
9e722fb
abc89d1
f7e87b9
b992645
9e722fb
 
 
2d9e081
8c6ad91
 
 
 
9e722fb
abc89d1
 
 
 
49113b6
 
 
abc89d1
 
8ec53db
abc89d1
 
 
 
 
 
 
 
2fb8a5f
 
abc89d1
6a67784
abc89d1
ad6d7c2
85002a1
5ca37ae
abc89d1
49113b6
 
 
 
 
abc89d1
49113b6
 
 
208a5cd
 
abc89d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6523d6c
abc89d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49113b6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
### -----------------------------------------------------------------------
### (FULL, Revised) version_1.07ALPHA_app.py
### -----------------------------------------------------------------------

# -------------------------------------------------------------------------
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# -------------------------------------------------------------------------

import spaces
import gradio as gr
from PIL import Image
#from pydub import AudioSegment
#from scipy.io import wavfile

import os
import re
import time
import warnings
#import datetime
#import pandas as pd
#import csv
import subprocess
from pathlib import Path
import tempfile
from fpdf import FPDF

import psutil
from gpuinfo import GPUInfo

import numpy as np
import torch
import torchaudio
import torchaudio.transforms as transforms

from transformers import pipeline, AutoModel

import spacy
import networkx as nx
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
warnings.filterwarnings("ignore")

#              ------------header section------------
HEADER_INFO = """
    # WEB APP ✨| Norwegian WHISPER Model
Switch Work [Transkribering av lydfiler til norsk skrift]
""".strip()
LOGO = "https://cdn-lfs-us-1.huggingface.co/repos/fe/3b/fe3bd7c8beece8b087fddcc2278295e7f56c794c8dcf728189f4af8bddc585e1/5112f67899d65e9797a7a60d05f983cf2ceefbe2f7cba74eeca93a4e7061becc?response-content-disposition=inline%3B+filename*%3DUTF-8%27%27logo.png%3B+filename%3D%22logo.png%22%3B&response-content-type=image%2Fpng&Expires=1724881270&Policy=eyJTdGF0ZW1lbnQiOlt7IkNvbmRpdGlvbiI6eyJEYXRlTGVzc1RoYW4iOnsiQVdTOkVwb2NoVGltZSI6MTcyNDg4MTI3MH19LCJSZXNvdXJjZSI6Imh0dHBzOi8vY2RuLWxmcy11cy0xLmh1Z2dpbmdmYWNlLmNvL3JlcG9zL2ZlLzNiL2ZlM2JkN2M4YmVlY2U4YjA4N2ZkZGNjMjI3ODI5NWU3ZjU2Yzc5NGM4ZGNmNzI4MTg5ZjRhZjhiZGRjNTg1ZTEvNTExMmY2Nzg5OWQ2NWU5Nzk3YTdhNjBkMDVmOTgzY2YyY2VlZmJlMmY3Y2JhNzRlZWNhOTNhNGU3MDYxYmVjYz9yZXNwb25zZS1jb250ZW50LWRpc3Bvc2l0aW9uPSomcmVzcG9uc2UtY29udGVudC10eXBlPSoifV19&Signature=ipo8wTjtC7R0QHbo%7Et9Q5CTaI3cZKxM0beajqlApfm5fh7%7EW-FULu1-ISL5bkowBSw9m5RdGoyOqj336OSS5fPD%7EnzYNmAMd3T5bx2-KfCDh6jz0HVECt8S7HeIu%7El2TetxrzL2tdHw4Np4Zpa8JKOnNnje24fF0Nr-xUS2dvPJf54rIL70-iWVXXhw8owxt0%7E1CJsUHC9oibp9B4mZcyWvvRldhDopiQBYELusZdTW3qvtTBK083WP3gHQxadQp8UDVTPZ0g3i112G2NfFJB%7Epa70XeN8m3E6ORx6pVH%7EW6IzjvmapWSF-tmXH-26wYG8aof%7E1U7enbR1w2QBTS-g__&Key-Pair-Id=K24J24Z295AEI9"
SIDEBAR_INFO = f"""
<div align="center">
    <img src="{LOGO}" style="width: 100%; height: auto;"/>
</div>
"""

# ------------transcribe section------------

pipe = pipeline("automatic-speech-recognition", model="NbAiLab/nb-whisper-large", chunk_length_s=30, generate_kwargs={'task': 'transcribe', 'language': 'no'})

@spaces.GPU()
def transcribe(microphone, file_upload, batch_size=15):
    warn_output = ""
    if (microphone is not None) and (file_upload is not None):
        warn_output = (
            "WARNING: You've uploaded an audio file and used the microphone. "
            "The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
        )

    elif (microphone is None) and (file_upload is None):
        return "ERROR: You have to either use the microphone or upload an audio file"

    file = microphone if microphone is not None else file_upload

    start_time = time.time()
    text = pipe(file, batch_size=batch_size, return_timestamps=False)["text"]

    end_time = time.time()
    output_time = end_time - start_time
    word_count = len(text.split())

    # --GPU metrics
    memory = psutil.virtual_memory()
    gpu_utilization, gpu_memory = GPUInfo.gpu_usage()
    gpu_utilization = gpu_utilization[0] if len(gpu_utilization) > 0 else 0
    gpu_memory = gpu_memory[0] if len(gpu_memory) > 0 else 0

    # --CPU metric
    cpu_usage = psutil.cpu_percent(interval=1)

    # --system info string
    system_info = f"""
    *Memory: {memory.total / (1024 * 1024 * 1024):.2f}GB, used: {memory.percent}%, available: {memory.available / (1024 * 1024 * 1024):.2f}GB.*
    *Processing time: {output_time:.2f} seconds.*
    *Number of words: {word_count}*
    *GPU Utilization: {gpu_utilization}%, GPU Memory: {gpu_memory}*
    *CPU Usage: {cpu_usage}%*
    """

    return warn_output + text.strip(), system_info

#              ------------summary section------------

#          ------------for app integration later------------

nlp = spacy.blank("nb")  # codename 'nb' = Norwegian Bokmål
nlp.add_pipe('sentencizer')
spacy_stop_words = spacy.lang.nb.stop_words.STOP_WORDS

summarization_model = AutoModel.from_pretrained("NbAiLab/nb-bert-large")
# pipe = pipeline("fill-mask", model="NbAiLab/nb-bert-large")

@spaces.GPU()
def clean_text(text):
    text = re.sub(r'https?:\/\/.*[\r\n]*', '', text)
    text = re.sub(r'[^\w\s]', '', text)
    text = re.sub(r'\s+', ' ', text).strip()
    return text

@spaces.GPU()
def preprocess_text(text, file_upload):

    if (text is not None) and (file_upload is None):
        doc = nlp(text)

    elif (text is None) and (file_upload is not None):
        doc = nlp(file_upload)

    stop_words = spacy_stop_words
    words = [token.text for token in doc if token.text.lower() not in stop_words]
    return ' '.join(words)

@spaces.GPU()
def summarize_text(text, file_upload):
    #
    # ----add same if/elif logic as above here----
    #
    preprocessed_text = preprocess_text(text)
    inputs = summarization_model(preprocessed_text, max_length=1024, return_tensors="pt", truncation=True)
    inputs = inputs.to(device)
    summary_ids = summarization_model.generate(inputs.input_ids, num_beams=5, max_length=150, early_stopping=True)
    return summarization_model.decode(summary_ids[0], skip_special_tokens=True)

@spaces.GPU()
def build_similarity_matrix(sentences):
    similarity_matrix = nx.Graph()
    for i, tokens_a in enumerate(sentences):
        for j, tokens_b in enumerate(sentences):
            if i != j:
                common_words = set(tokens_a) & set(tokens_b)
                similarity_matrix.add_edge(i, j, weight=len(common_words))
    return similarity_matrix

# PageRank
@spaces.GPU()
def graph_based_summary(text, file_upload, num_paragraphs=3):
    #
    # ----add same if/elif logic as above here----
    #
    sentences = [sent.text for sent in doc.sents]
    if len(sentences) < num_paragraphs:
        return ' '.join(sentences)

    sentence_tokens = [nlp(sent) for sent in sentences]
    stop_words = spacy_stop_words
    filtered_tokens = [[token.text for token in tokens if token.text.lower() not in stop_words] for tokens in sentence_tokens]
    similarity_matrix = build_similarity_matrix(filtered_tokens)

    scores = nx.pagerank(similarity_matrix)
    ranked_sentences = sorted(((scores[i], sent) for i, sent in enumerate(sentences)), reverse=True)
    return ' '.join([sent for _, sent in ranked_sentences[:num_paragraphs]])

@spaces.GPU()
def lex_rank_summary(text, file_upload, num_paragraphs=3, threshold=0.1):

    if (text is not None) and (file_upload is None):
        doc = nlp(text)

    elif (text is None) and (file_upload is not None):
        doc = nlp(file_upload)

    sentences = [sent.text for sent in doc.sents]
    if len(sentences) < num_paragraphs:
        return ' '.join(sentences)

    stop_words = spacy_stop_words
    vectorizer = TfidfVectorizer(stop_words=list(stop_words))
    X = vectorizer.fit_transform(sentences)
    similarity_matrix = cosine_similarity(X, X)

    # Apply threshold@similarity matrix
    similarity_matrix[similarity_matrix < threshold] = 0
    nx_graph = nx.from_numpy_array(similarity_matrix)
    scores = nx.pagerank(nx_graph)
    ranked_sentences = sorted(((scores[i], s) for i, s in enumerate(sentences)), reverse=True)
    return ' '.join([ranked_sentences[i][1] for i in range(num_paragraphs)])

@spaces.GPU()
def text_rank_summary(text, file_upload, num_paragraphs=3):

    if (text is not None) and (file_upload is not None):
        doc = nlp(text)

    elif (text is None) and (file_upload is not None):
        doc = nlp(file_upload)

    sentences = [sent.text for sent in doc.sents]
    if len(sentences) < num_paragraphs:
        return ' '.join(sentences)

    stop_words = spacy_stop_words
    vectorizer = TfidfVectorizer(stop_words=list(stop_words))
    X = vectorizer.fit_transform(sentences)
    similarity_matrix = cosine_similarity(X, X)

    nx_graph = nx.from_numpy_array(similarity_matrix)
    scores = nx.pagerank(nx_graph)
    ranked_sentences = sorted(((scores[i], s) for i, s in enumerate(sentences)), reverse=True)
    return ' '.join([ranked_sentences[i][1] for i in range(num_paragraphs)])

def save_to_pdf(text, summary):
    pdf = FPDF()
    pdf.add_page()
    pdf.set_font("Arial", size=12)
    #
    # ----add same if/elif logic as above here----
    #
    if text:
        pdf.multi_cell(0, 10, "Text:\n" + text)

    pdf.ln(10)  # Paragraph metric

    if summary:
        pdf.multi_cell(0, 10, "Summary:\n" + summary)

    pdf_output_path = "transcription_.pdf"
    pdf.output(pdf_output_path)
    return pdf_output_path

iface = gr.Blocks()

with iface:

    gr.HTML(SIDEBAR_INFO)
    gr.Markdown(HEADER_INFO)

    with gr.Row():
        gr.Markdown('''
        ##### Here you will get transcription output
        ##### ''')
        microphone = gr.Audio(sources="microphone", type="filepath")
        upload = gr.Audio(sources="upload", type="filepath")

        transcribe_btn = gr.Button("Transcribe Interview")
        text_output = gr.Textbox()
        system_info = gr.Textbox(label="System Info")
        # --basic syntax!: positional argument ")" follows keyword argument, e.g ..., system_info  :P
        transcribe_btn.click(fn=transcribe_audio,[microphone, upload], outputs=[text_output, system_info]) 


    with gr.Tabs():

        with gr.TabItem("Summary | PageRank"):
            text_input_graph = gr.Textbox(label="Input Text", placeholder="txt2summarize")
            summary_output_graph = gr.Textbox(label="PageRank | token-based similarity")

            gr.Markdown("""
            **token-based**: similarity matrix edge weights representing token overlap/
            ranked by their centrality in the graph (good with dense inter-sentence relationships)
            """)
            gr.Markdown("""
            *Bjørn*: **gir sammendrag som fanger opp de mest relevante setninger i teksten**
            """)

            summarize_transcribed_button_graph = gr.Button("Summary of Transcribed Text, Click Here")
            summarize_transcribed_button_graph.click(fn=lambda text: graph_based_summary(text), inputs=[transcribed_text], outputs=[summary_output_graph])
            summarize_uploaded_button_graph = gr.Button("Upload Text to Summarize, Click Here")
            summarize_uploaded_button_graph.click(fn=graph_based_summary(file_upload), inputs=[text_input_graph], outputs=[summary_output_graph])

        with gr.TabItem("Summary | LexRank"):
            text_output = gr.Textbox(label="Transcription Output")
            text_input_lex = gr.Textbox(label="Input Text", placeholder="txt2summarize")
            summary_output_lex = gr.Textbox(label="LexRank | cosine similarity")

            gr.Markdown("""
            **semantic**: TF-IDF vectorization@cosine similarity matrix, ranked by eigenvector centrality.
            (good for sparse graph structures with thresholding)
            """)
            gr.Markdown("""
            *Bjørn*: **gir sammendrag som best fanger opp betydningen av hele teksten**
            """)

            summarize_transcribed_button_lex = gr.Button("Summary of Transcribed Text, Click Here")
            summarize_transcribed_button_lex.click(fn=lambda text: lex_rank_summary(text), inputs=[transcribed_text], outputs=[summary_output_lex])
            summarize_uploaded_button_lex = gr.Button("Upload Text to Summarize, Click Here")
            summarize_uploaded_button_lex.click(fn=lex_rank_summary(file_upload), inputs=[text_input_lex], outputs=[summary_output_lex])

        with gr.TabItem("Summary | TextRank"):
            text_input_text_rank = gr.Textbox(label="Input Text", placeholder="txt2summarize")
            summary_output_text_rank = gr.Textbox(label="TextRank | lexical similarity")

            gr.Markdown("""
            **sentence**: graph with weighted edges based on lexical similarity. (i.e" "sentence similarity"word overlap)/sentence similarity
            """)
            gr.Markdown("""
            *Bjørn*: **sammendrag basert på i de setningene som ligner mest på hverandre fra teksten**
            """)

            summarize_transcribed_button_text_rank = gr.Button("Summary of Transcribed Text, Click Here")
            summarize_transcribed_button_text_rank.click(fn=lambda text: text_rank_summary(text), inputs=[transcribed_text], outputs=[summary_output_text_rank])
            summarize_uploaded_button_text_rank = gr.Button("Upload Text to Summarize, Click Here")
            summarize_uploaded_button_text_rank.click(fn=text_rank_summary(file_upload), inputs=[text_input_text_rank], outputs=[summary_output_text_rank])


        with gr.TabItem("Download PDF"):
            pdf_text_only = gr.Button("Download PDF with Transcribed Text Only")
            pdf_summary_only = gr.Button("Download PDF with Summary-of-Transcribed-Text Only")
            pdf_both = gr.Button("Download PDF with Both")

            pdf_output = gr.File(label="Download PDF")

            pdf_text_only.click(fn=lambda text: save_to_pdf(text, ""), inputs=[transcribed_text], outputs=[pdf_output])
            pdf_summary_only.click(fn=lambda summary: save_to_pdf("", summary), inputs=[summary_output_graph, summary_output_lex, summary_output_text_rank], outputs=[pdf_output])  # Includes all summary outputs
            pdf_both.click(fn=lambda text, summary: save_to_pdf(text, summary), inputs=[transcribed_text, summary_output_graph], outputs=[pdf_output])