Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -10,7 +10,7 @@ def preprocess_image(image, blur_value):
|
|
10 |
blurred = cv2.GaussianBlur(gray, (blur_value, blur_value), 0)
|
11 |
return blurred
|
12 |
|
13 |
-
def compare_images(image1, image2, blur_value, technique):
|
14 |
# Preprocess images
|
15 |
gray1 = preprocess_image(image1, blur_value)
|
16 |
gray2 = preprocess_image(image2, blur_value)
|
@@ -23,8 +23,8 @@ def compare_images(image1, image2, blur_value, technique):
|
|
23 |
_, thresh = cv2.threshold(diff, 30, 255, cv2.THRESH_BINARY_INV)
|
24 |
elif technique == "Otsu's Threshold":
|
25 |
_, thresh = cv2.threshold(diff, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)
|
26 |
-
else: #
|
27 |
-
_, thresh = cv2.threshold(diff,
|
28 |
|
29 |
# Find contours of differences
|
30 |
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
@@ -39,10 +39,15 @@ def compare_images(image1, image2, blur_value, technique):
|
|
39 |
# Apply the mask to highlight the object added in the second image
|
40 |
highlighted = cv2.bitwise_and(image2, mask)
|
41 |
|
42 |
-
#
|
43 |
-
diff_colored = cv2.
|
|
|
|
|
44 |
|
45 |
-
return highlighted,
|
|
|
|
|
|
|
46 |
|
47 |
demo = gr.Interface(
|
48 |
fn=compare_images,
|
@@ -50,14 +55,18 @@ demo = gr.Interface(
|
|
50 |
gr.Image(type="numpy", label="Image Without Object"),
|
51 |
gr.Image(type="numpy", label="Image With Object"),
|
52 |
gr.Slider(minimum=1, maximum=15, step=2, value=5, label="Gaussian Blur"),
|
53 |
-
gr.Dropdown(["Adaptive Threshold", "Otsu's Threshold", "Simple Binary"], label="Thresholding Technique", value="Adaptive Threshold")
|
|
|
54 |
],
|
55 |
outputs=[
|
56 |
gr.Image(type="numpy", label="Highlighted Differences"),
|
57 |
-
gr.Image(type="numpy", label="Raw Difference (Magenta)")
|
58 |
],
|
59 |
title="Object Difference Highlighter",
|
60 |
-
description="Upload two images: one without an object and one with an object. The app will highlight only the newly added object and show the real differences in magenta."
|
|
|
61 |
)
|
62 |
|
|
|
|
|
63 |
demo.launch()
|
|
|
10 |
blurred = cv2.GaussianBlur(gray, (blur_value, blur_value), 0)
|
11 |
return blurred
|
12 |
|
13 |
+
def compare_images(image1, image2, blur_value, technique, threshold_value):
|
14 |
# Preprocess images
|
15 |
gray1 = preprocess_image(image1, blur_value)
|
16 |
gray2 = preprocess_image(image2, blur_value)
|
|
|
23 |
_, thresh = cv2.threshold(diff, 30, 255, cv2.THRESH_BINARY_INV)
|
24 |
elif technique == "Otsu's Threshold":
|
25 |
_, thresh = cv2.threshold(diff, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)
|
26 |
+
else: # Simple Binary
|
27 |
+
_, thresh = cv2.threshold(diff, threshold_value, 255, cv2.THRESH_BINARY)
|
28 |
|
29 |
# Find contours of differences
|
30 |
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
|
|
39 |
# Apply the mask to highlight the object added in the second image
|
40 |
highlighted = cv2.bitwise_and(image2, mask)
|
41 |
|
42 |
+
# Overlay the difference in magenta over the first image
|
43 |
+
diff_colored = cv2.cvtColor(diff, cv2.COLOR_GRAY2BGR)
|
44 |
+
diff_colored[:, :, 1:] = 0 # Keep only red channel for magenta effect
|
45 |
+
overlayed = cv2.addWeighted(image1, 0.7, diff_colored, 0.3, 0)
|
46 |
|
47 |
+
return highlighted, overlayed
|
48 |
+
|
49 |
+
def update_threshold_visibility(technique):
|
50 |
+
return gr.update(visible=(technique == "Simple Binary"))
|
51 |
|
52 |
demo = gr.Interface(
|
53 |
fn=compare_images,
|
|
|
55 |
gr.Image(type="numpy", label="Image Without Object"),
|
56 |
gr.Image(type="numpy", label="Image With Object"),
|
57 |
gr.Slider(minimum=1, maximum=15, step=2, value=5, label="Gaussian Blur"),
|
58 |
+
gr.Dropdown(["Adaptive Threshold", "Otsu's Threshold", "Simple Binary"], label="Thresholding Technique", value="Adaptive Threshold", interactive=True),
|
59 |
+
gr.Slider(minimum=0, maximum=255, step=1, value=50, label="Threshold Value", visible=False)
|
60 |
],
|
61 |
outputs=[
|
62 |
gr.Image(type="numpy", label="Highlighted Differences"),
|
63 |
+
gr.Image(type="numpy", label="Raw Difference Overlay (Magenta)")
|
64 |
],
|
65 |
title="Object Difference Highlighter",
|
66 |
+
description="Upload two images: one without an object and one with an object. The app will highlight only the newly added object and show the real differences in magenta overlayed on the original image.",
|
67 |
+
live=True
|
68 |
)
|
69 |
|
70 |
+
demo.load(update_threshold_visibility, inputs=["Thresholding Technique"], outputs=["Threshold Value"])
|
71 |
+
|
72 |
demo.launch()
|