cavargas10's picture
Logging
6e7dc72 verified
import gradio as gr
import spaces
import os
import shutil
import random
import uuid
from datetime import datetime
from diffusers import DiffusionPipeline
os.environ['SPCONV_ALGO'] = 'native'
from typing import *
import torch
import numpy as np
import imageio
from easydict import EasyDict as edict
from PIL import Image
from trellis.pipelines import TrellisImageTo3DPipeline
from trellis.representations import Gaussian, MeshExtractResult
from trellis.utils import render_utils, postprocessing_utils
import logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - HF_SPACE_IMG - %(levelname)s - %(message)s')
NUM_INFERENCE_STEPS = 8
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
# Constants
MAX_SEED = np.iinfo(np.int32).max
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
os.makedirs(TMP_DIR, exist_ok=True)
def start_session(req: gr.Request):
session_hash = str(req.session_hash)
user_dir = os.path.join(TMP_DIR, session_hash)
logging.info(f"START SESSION: Creando directorio para la sesi贸n {session_hash} en {user_dir}")
os.makedirs(user_dir, exist_ok=True)
def end_session(req: gr.Request):
session_hash = str(req.session_hash)
user_dir = os.path.join(TMP_DIR, session_hash)
logging.info(f"END SESSION: Intentando eliminar el directorio de la sesi贸n {session_hash} en {user_dir}")
if os.path.exists(user_dir):
try:
shutil.rmtree(user_dir)
logging.info(f"Directorio de la sesi贸n {session_hash} eliminado correctamente.")
except Exception as e:
logging.error(f"Error al eliminar el directorio de la sesi贸n {session_hash}: {e}")
else:
logging.warning(f"El directorio de la sesi贸n {session_hash} no fue encontrado al intentar eliminarlo. Es posible que ya haya sido limpiado.")
def preprocess_image(image: Image.Image) -> Image.Image:
logging.info("Preprocesando imagen para Trellis...")
processed_image = trellis_pipeline.preprocess_image(image)
logging.info("Preprocesamiento de imagen completado.")
return processed_image
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
return {
'gaussian': {
**gs.init_params,
'_xyz': gs._xyz.cpu().numpy(),
'_features_dc': gs._features_dc.cpu().numpy(),
'_scaling': gs._scaling.cpu().numpy(),
'_rotation': gs._rotation.cpu().numpy(),
'_opacity': gs._opacity.cpu().numpy(),
},
'mesh': {
'vertices': mesh.vertices.cpu().numpy(),
'faces': mesh.faces.cpu().numpy(),
},
}
def unpack_state(state: dict) -> Tuple[Gaussian, edict]:
gs = Gaussian(
aabb=state['gaussian']['aabb'],
sh_degree=state['gaussian']['sh_degree'],
mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
scaling_bias=state['gaussian']['scaling_bias'],
opacity_bias=state['gaussian']['opacity_bias'],
scaling_activation=state['gaussian']['scaling_activation'],
)
gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
mesh = edict(
vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
faces=torch.tensor(state['mesh']['faces'], device='cuda'),
)
return gs, mesh
def get_seed(randomize_seed: bool, seed: int) -> int:
new_seed = np.random.randint(0, MAX_SEED) if randomize_seed else seed
logging.info(f"Usando seed: {new_seed}")
return new_seed
@spaces.GPU
def generate_flux_image(
prompt: str,
seed: int,
randomize_seed: bool,
width: int,
height: int,
guidance_scale: float,
req: gr.Request,
progress: gr.Progress = gr.Progress(track_tqdm=True),
) -> Image.Image:
session_hash = str(req.session_hash)
logging.info(f"[{session_hash}] Iniciando generate_flux_image con prompt: '{prompt[:50]}...'")
if randomize_seed:
seed = random.randint(0, MAX_SEED)
logging.info(f"[{session_hash}] Seed aleatorizado a: {seed}")
generator = torch.Generator(device=device).manual_seed(seed)
full_prompt = "wbgmsst, " + prompt + ", 3D isometric, white background"
image = flux_pipeline(
prompt=full_prompt,
guidance_scale=guidance_scale,
num_inference_steps=NUM_INFERENCE_STEPS,
width=width,
height=height,
generator=generator,
).images[0]
user_dir = os.path.join(TMP_DIR, session_hash)
os.makedirs(user_dir, exist_ok=True)
filepath = os.path.join(user_dir, "generated_2d_image.png")
image.save(filepath)
logging.info(f"[{session_hash}] Imagen 2D guardada en: {filepath}")
return image
@spaces.GPU
def image_to_3d(
image: Image.Image,
seed: int,
ss_guidance_strength: float,
ss_sampling_steps: int,
slat_guidance_strength: float,
slat_sampling_steps: int,
req: gr.Request,
) -> Tuple[dict, str]:
session_hash = str(req.session_hash)
logging.info(f"[{session_hash}] Iniciando image_to_3d...")
user_dir = os.path.join(TMP_DIR, session_hash)
outputs = trellis_pipeline.run(
image,
seed=seed,
formats=["gaussian", "mesh"],
preprocess_image=False,
sparse_structure_sampler_params={
"steps": ss_sampling_steps,
"cfg_strength": ss_guidance_strength,
},
slat_sampler_params={
"steps": slat_sampling_steps,
"cfg_strength": slat_guidance_strength,
},
)
logging.info(f"[{session_hash}] Generaci贸n 3D completada. Renderizando video...")
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
video_path = os.path.join(user_dir, 'sample.mp4')
imageio.mimsave(video_path, video, fps=15)
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
torch.cuda.empty_cache()
logging.info(f"[{session_hash}] Video renderizado y estado empaquetado. Devolviendo: {video_path}")
return state, video_path
@spaces.GPU(duration=90)
def extract_glb(
state: dict,
mesh_simplify: float,
texture_size: int,
req: gr.Request,
) -> Tuple[str, str]:
session_hash = str(req.session_hash)
logging.info(f"[{session_hash}] Iniciando extract_glb...")
user_dir = os.path.join(TMP_DIR, session_hash)
gs, mesh = unpack_state(state)
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
glb_path = os.path.join(user_dir, 'sample.glb')
glb.export(glb_path)
torch.cuda.empty_cache()
logging.info(f"[{session_hash}] GLB extra铆do. Devolviendo: {glb_path}")
return glb_path, glb_path
# Interfaz Gradio
with gr.Blocks() as demo:
gr.Markdown("""
# UTPL - Conversi贸n de Texto a Imagen a objetos 3D usando IA
### Tesis: *"Objetos tridimensionales creados por IA: Innovaci贸n en entornos virtuales"*
**Autor:** Carlos Vargas
**Base t茅cnica:** Adaptaci贸n de [TRELLIS](https://trellis3d.github.io/) y [FLUX](https://huggingface.co/camenduru/FLUX.1-dev-diffusers) (herramientas de c贸digo abierto para generaci贸n 3D)
**Prop贸sito educativo:** Demostraciones acad茅micas e Investigaci贸n en modelado 3D autom谩tico
""")
with gr.Row():
with gr.Column():
# Flux image generation inputs
prompt = gr.Textbox(label="Prompt", placeholder="Enter your game asset description")
with gr.Accordion("Generation Settings", open=False):
seed = gr.Slider(0, MAX_SEED, label="Seed", value=42, step=1)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
with gr.Row():
width = gr.Slider(512, 1024, label="Width", value=1024, step=16)
height = gr.Slider(512, 1024, label="Height", value=1024, step=16)
with gr.Row():
guidance_scale = gr.Slider(0.0, 10.0, label="Guidance Scale", value=3.5, step=0.1)
# Botones separados
generate_image_btn = gr.Button("Generar Imagen")
generate_video_btn = gr.Button("Generar Video", interactive=False)
with gr.Column():
generated_image = gr.Image(label="Generated Asset", type="pil")
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True)
model_output = gr.Model3D(label="Extracted GLB/Gaussian", height=400)
with gr.Row():
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
with gr.Row():
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
with gr.Accordion("3D Generation Settings", open=False):
gr.Markdown("Stage 1: Sparse Structure Generation")
with gr.Row():
ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
gr.Markdown("Stage 2: Structured Latent Generation")
with gr.Row():
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
with gr.Accordion("GLB Extraction Settings", open=False):
mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
output_buf = gr.State()
demo.load(start_session)
demo.unload(end_session)
# Generar imagen
generate_image_btn.click(
generate_flux_image,
inputs=[prompt, seed, randomize_seed, width, height, guidance_scale],
outputs=[generated_image]
).then(
lambda: gr.Button(interactive=True),
outputs=[generate_video_btn],
)
# Generar video
generate_video_btn.click(
get_seed,
inputs=[randomize_seed, seed],
outputs=[seed],
).then(
preprocess_image,
inputs=[generated_image],
outputs=[generated_image],
).then(
image_to_3d,
inputs=[
generated_image,
seed,
ss_guidance_strength,
ss_sampling_steps,
slat_guidance_strength,
slat_sampling_steps
],
outputs=[output_buf, video_output],
).then(
lambda: gr.Button(interactive=True),
outputs=[extract_glb_btn],
)
video_output.clear(
lambda: gr.Button(interactive=False),
outputs=[extract_glb_btn],
)
# Extraer GLB
extract_glb_btn.click(
extract_glb,
inputs=[output_buf, mesh_simplify, texture_size],
outputs=[model_output, download_glb],
).then(
lambda: gr.Button(interactive=True),
outputs=[download_glb],
)
model_output.clear(
lambda: gr.Button(interactive=False),
outputs=[download_glb],
)
# Initialize both pipelines
if __name__ == "__main__":
from diffusers import FluxTransformer2DModel, FluxPipeline, BitsAndBytesConfig, GGUFQuantizationConfig
from transformers import T5EncoderModel, BitsAndBytesConfig as BitsAndBytesConfigTF
# Initialize Flux pipeline
device = "cuda" if torch.cuda.is_available() else "cpu"
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
dtype = torch.bfloat16
file_url = "https://huggingface.co/gokaygokay/flux-game/blob/main/hyperflux_00001_.q8_0.gguf"
file_url = file_url.replace("/resolve/main/", "/blob/main/").replace("?download=true", "")
single_file_base_model = "camenduru/FLUX.1-dev-diffusers"
quantization_config_tf = BitsAndBytesConfigTF(load_in_8bit=True, bnb_8bit_compute_dtype=torch.bfloat16)
text_encoder_2 = T5EncoderModel.from_pretrained(single_file_base_model, subfolder="text_encoder_2", torch_dtype=dtype, config=single_file_base_model, quantization_config=quantization_config_tf, token=huggingface_token)
if ".gguf" in file_url:
transformer = FluxTransformer2DModel.from_single_file(file_url, subfolder="transformer", quantization_config=GGUFQuantizationConfig(compute_dtype=dtype), torch_dtype=dtype, config=single_file_base_model)
else:
quantization_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_use_double_quant=True, bnb_4bit_compute_dtype=torch.bfloat16, token=huggingface_token)
transformer = FluxTransformer2DModel.from_single_file(file_url, subfolder="transformer", torch_dtype=dtype, config=single_file_base_model, quantization_config=quantization_config, token=huggingface_token)
flux_pipeline = FluxPipeline.from_pretrained(single_file_base_model, transformer=transformer, text_encoder_2=text_encoder_2, torch_dtype=dtype, token=huggingface_token)
flux_pipeline.to("cuda")
# Initialize Trellis pipeline
trellis_pipeline = TrellisImageTo3DPipeline.from_pretrained("cavargas10/TRELLIS")
trellis_pipeline.cuda()
try:
trellis_pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8)))
except:
pass
demo.launch(show_error=True)