Spaces:
Sleeping
Sleeping
import gradio as gr | |
from PIL import Image | |
import numpy as np | |
import cv2 | |
from ultralytics import YOLO | |
# Load the YOLOv8 model | |
model = YOLO('best.pt') | |
# Define a list of colors for the 6 classes | |
colors = [ | |
(255, 0, 0), # Red | |
(0, 255, 0), # Green | |
(0, 0, 255), # Blue | |
(255, 255, 0), # Cyan | |
(255, 0, 255), # Magenta | |
(0, 255, 255) # Yellow | |
] | |
def detect_objects(image): | |
# Resize the input image to 200x200 pixels | |
image = image.resize((200, 200)) | |
# Convert the input image to a format YOLO can work with | |
image = np.array(image) | |
# Perform detection | |
results = model(image)[0] | |
# Draw bounding boxes on the image | |
for box in results.boxes.data.cpu().numpy(): | |
x1, y1, x2, y2, score, class_id = box | |
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2) | |
# Select color for the class id | |
color = colors[int(class_id) % len(colors)] | |
# Draw the bounding box with a thinner line | |
cv2.rectangle(image, (x1, y1), (x2, y2), color, 1) # Line width set to 1 | |
# Put the class name above the bounding box with smaller font | |
class_name = model.model.names[int(class_id)] | |
cv2.putText(image, f'{class_name} {score:.2f}', (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.4, color, 1) | |
# Convert back to PIL image | |
return Image.fromarray(image) | |
# Define the Gradio interface | |
interface = gr.Interface( | |
fn=detect_objects, | |
inputs=gr.Image(type="pil"), | |
outputs=gr.Image(type="pil"), | |
title="YOLOv8 Object Detection", | |
description="Upload an image and YOLOv8 will detect objects in the image." | |
) | |
# Launch the interface | |
interface.launch() |