Colin Leong
CDL: minor changes/cleanup
a98d628
raw
history blame
7 kB
import streamlit as st
from streamlit.runtime.uploaded_file_manager import UploadedFile
import numpy as np
from pose_format import Pose
from pose_format.pose_visualizer import PoseVisualizer
from pathlib import Path
from pyzstd import decompress
from PIL import Image
import mediapipe as mp
mp_holistic = mp.solutions.holistic
FACEMESH_CONTOURS_POINTS = [
str(p)
for p in sorted(
set([p for p_tup in list(mp_holistic.FACEMESH_CONTOURS) for p in p_tup])
)
]
def pose_normalization_info(pose_header):
if pose_header.components[0].name == "POSE_LANDMARKS":
return pose_header.normalization_info(
p1=("POSE_LANDMARKS", "RIGHT_SHOULDER"),
p2=("POSE_LANDMARKS", "LEFT_SHOULDER"),
)
if pose_header.components[0].name == "BODY_135":
return pose_header.normalization_info(
p1=("BODY_135", "RShoulder"), p2=("BODY_135", "LShoulder")
)
if pose_header.components[0].name == "pose_keypoints_2d":
return pose_header.normalization_info(
p1=("pose_keypoints_2d", "RShoulder"), p2=("pose_keypoints_2d", "LShoulder")
)
def pose_hide_legs(pose):
if pose.header.components[0].name == "POSE_LANDMARKS":
point_names = ["KNEE", "ANKLE", "HEEL", "FOOT_INDEX"]
# pylint: disable=protected-access
points = [
pose.header._get_point_index("POSE_LANDMARKS", side + "_" + n)
for n in point_names
for side in ["LEFT", "RIGHT"]
]
pose.body.confidence[:, :, points] = 0
pose.body.data[:, :, points, :] = 0
return pose
else:
raise ValueError("Unknown pose header schema for hiding legs")
# @st.cache_data(hash_funcs={UploadedFile: lambda p: str(p.name)})
def load_pose(uploaded_file: UploadedFile) -> Pose:
# with input_path.open("rb") as f_in:
if uploaded_file.name.endswith(".zst"):
return Pose.read(decompress(uploaded_file.read()))
else:
return Pose.read(uploaded_file.read())
@st.cache_data(hash_funcs={Pose: lambda p: np.array(p.body.data)})
def get_pose_frames(pose: Pose, transparency: bool = False):
v = PoseVisualizer(pose)
frames = [frame_data for frame_data in v.draw()]
if transparency:
cv_code = v.cv2.COLOR_BGR2RGBA
else:
cv_code = v.cv2.COLOR_BGR2RGB
images = [Image.fromarray(v.cv2.cvtColor(frame, cv_code)) for frame in frames]
return frames, images
def get_pose_gif(pose: Pose, step: int = 1, start_frame:int=None, end_frame:int=None, fps: int = None):
if fps is not None:
pose.body.fps = fps
v = PoseVisualizer(pose)
frames = [frame_data for frame_data in v.draw()]
frames = frames[start_frame:end_frame:step]
return v.save_gif(None, frames=frames)
st.write("# Pose-format explorer")
st.write(
"`pose-format` is a toolkit/library for 'handling, manipulation, and visualization of poses'. See [The documentation](https://pose-format.readthedocs.io/en/latest/)"
)
st.write(
"I made this app to help me visualize and understand the format, including different 'components' and 'points', and what they are named."
)
uploaded_file = st.file_uploader("Upload a .pose file", type=[".pose", ".pose.zst"])
if uploaded_file is not None:
with st.spinner(f"Loading {uploaded_file.name}"):
pose = load_pose(uploaded_file)
frames, images = get_pose_frames(pose=pose)
st.success("Done loading!")
st.write("### File Info")
with st.expander(f"Show full Pose-format header from {uploaded_file.name}"):
st.write(pose.header)
st.write(f"### Selection")
component_selection = st.radio(
"How to select components?", options=["manual", "signclip"]
)
component_names = [c.name for c in pose.header.components]
chosen_component_names = []
points_dict = {}
hide_legs = False
if component_selection == "manual":
chosen_component_names = st.pills(
"Select components to visualize", options=component_names, default=component_names,selection_mode="multi"
)
for component in pose.header.components:
if component.name in chosen_component_names:
with st.expander(f"Points for {component.name}"):
selected_points = st.multiselect(
f"Select points for component {component.name}:",
options=component.points,
default=component.points,
)
if selected_points != component.points: # Only add entry if not all points are selected
points_dict[component.name] = selected_points
elif component_selection == "signclip":
st.write("Selected landmarks used for SignCLIP.")
chosen_component_names = ["POSE_LANDMARKS", "FACE_LANDMARKS", "LEFT_HAND_LANDMARKS", "RIGHT_HAND_LANDMARKS"]
points_dict = {"FACE_LANDMARKS": FACEMESH_CONTOURS_POINTS}
# Filter button logic
# Filter section
st.write("### Filter .pose File")
filtered = st.button("Apply Filter!")
if filtered:
pose = pose.get_components(chosen_component_names, points=points_dict if points_dict else None)
if hide_legs:
pose = pose_hide_legs(pose)
st.session_state.filtered_pose = pose
filtered_pose = st.session_state.get('filtered_pose', pose)
if filtered_pose:
filtered_pose = st.session_state.get('filtered_pose', pose)
st.write(f"#### Filtered .pose file")
st.write(f"Pose data shape: {filtered_pose.body.data.shape}")
with st.expander("Show header"):
st.write(filtered_pose.header)
with st.expander("Show body"):
st.write(filtered_pose.body)
# with st.expander("Show data:"):
# for frame in filtered_pose.body.data:
# st.write(f"Frame:{frame}")
# for person in frame:
# st.write(person)
pose_file_out = Path(uploaded_file.name).with_suffix(".pose")
with pose_file_out.open("wb") as f:
pose.write(f)
with pose_file_out.open("rb") as f:
st.download_button("Download Filtered Pose", f, file_name=pose_file_out.name)
st.write("### Visualization")
step = st.select_slider("Step value to select every nth image", list(range(1, len(frames))), value=1)
fps = st.slider("FPS for visualization", min_value=1.0, max_value=filtered_pose.body.fps, value=filtered_pose.body.fps)
start_frame, end_frame = st.slider(
"Select Frame Range",
0,
len(frames),
(0, len(frames)), # Default range
)
# Visualization button logic
if st.button("Visualize"):
# Load filtered pose if it exists; otherwise, use the unfiltered pose
st.image(get_pose_gif(pose=filtered_pose, step=step, start_frame=start_frame, end_frame=end_frame, fps=fps))